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ABSTRACT
A number of powerful and scalable hybrid systems model
checkers have recently emerged. Although all of them honor
roughly the same hybrid systems semantics, they have dras-
tically different model description languages. This situation
(a) makes it difficult to quickly evaluate a specific hybrid
automaton model using the different tools, (b) obstructs
comparisons of reachability approaches, and (c) impedes
the widespread application of research results that perform
model modification and could benefit many of the tools. In
this paper, we present Hyst, a Hybrid Source Transformer.
Hyst is a source-to-source translation tool, currently taking
input in the SpaceEx model format, and translating to the
formats of HyCreate, Flow*, or dReach. Internally, the tool
supports generic model-to-model transformation passes that
serve to both ease the translation and potentially improve
reachability results for the supported tools. Although these
model transformation passes could be implemented within
each tool, the Hyst approach provides a single place for
model modification, generating modified input sources for
the unmodified target tools. Our evaluation demonstrates
Hyst is capable of automatically translating benchmarks
in several classes (including affine and nonlinear hybrid au-
tomata) to the input formats of several tools. Additionally,
we illustrate a general model transformation pass based on
pseudo-invariants implemented in Hyst that illustrates the
reachability improvement.

1. INTRODUCTION
Hybrid systems are mathematical models that combine dis-
crete and continuous dynamics. This formalism can capture
the behavior of a large range of real-world systems. For
example, embedded systems [23, 35] and systems from the
biological domain [19, 21] can be modeled using the hybrid
systems formalism. At the same time, the resulting sys-
tem behavior requires a careful handling to ensure a precise
yet time efficient analysis. A number of powerful and scal-
able model checkers have recently emerged [7, 16,26,28,33].
They cover a number of hybrid system classes, e.g., affine
vs. non-linear continuous dynamics and monolithic vs. au-
tomata networks. Furthermore, the analysis algorithms are
built around different ideas and state representations, e.g.,
flow-pipe construction vs. decision procedures for differen-
tial equations. These design decisions make the tools partic-
ularly efficient in some settings, e.g., such as only for some
classes of continuous dynamics.

In this paper, we present an automatic source-to-source model
converter from the SpaceEx input format to the Flow*, Hy-

Create, and dReach formats. At present, direct comparisons
between model checkers cannot be done out-of-the-box as
the input languages are syntactically different. However, a
manual comparison is possible because, although the input
languages of the considered model checkers differ syntacti-
cally, they rely on the same behavioral semantics.

We envision Hyst being used in three main ways. First, a
user of verification tools can quickly generate a model file for
a number of tools in order to find a tool that best fits the sys-
tem under consideration. Second, a developer of hybrid sys-
tems model checkers can use Hyst to both compare the per-
formance of newly developed algorithms with other up-to-
date analysis tools, as well as to quickly check for correctness
against a common set of models and as part of a regression
test suite. Third, researches can write generic model trans-
formation passes that modify the tool’s hybrid automaton
intermediate representation. Then, all supported tools can
immediately benefit from these research advances, rather
than having to reimplement new approaches piecemeal for
each tool.

Related Work. In the last decade, several research groups
have worked on approaches to unify the syntax of hybrid
model checkers. Sangiovanni-Vincentelli and his co-authors
suggest the hybrid systems interchange format (HSIF) [11,
12, 39, 40]. A further attempt to provide a common input
language focused on the model composition has been un-
dertaken within the FP7 Multiform project [2, 44]. The
project resulted in the Compositional Interchange Format
(CIF). Earlier efforts for interchange formats were initiated
for Charon [4]. The above outlined projects have in com-
mon an idea to collect all the features available in different
hybrid model checkers and provide an input language which
essentially subsumes the languages of every particular tool.
Although having a common interchange language supported
by all the tools would be a ultimate solution, this approach
hinges on the willingness of the tool developers to support
such an input format. Furthermore, the incorporation of a
common format into an established tool by third party de-
velopers would be difficult due to the time overhead needed
to get acquainted with the code of each particular hybrid
model checker.

Alternative approaches include using other highly-used lan-
guages as standard input formats. Agrawal et al. [1] suggest
an algorithm to translate Simulink and Stateflow models



into the equivalent HSIF models. In a slightly different set-
ting, Schrammel et al. [43] consider the translation prob-
lem for complex SSMs where involved treatment of zero-
crossings is needed. Chen et al. [13] provide a translation
from Stateflow to CSP [32]. Alur et al. [5] propose to use
the symbolic analysis in order to improving the test cover-
age of SSMs. In this scope, a considered SSM is converted
to a linear hybrid automaton. Assuming that a SSM can be
converted to a hybrid system, our tool can principally use
the resulting automaton as its input. Mathworks, unfortu-
nately, does not provide any rigid operational semantics for
its tools. This makes the model translation process error-
prone and ambiguous, whereas we are mostly concerned with
the formal verification of a given model. Other recent lan-
guages include the HYbrid systems with Discrete Interaction
(HyDI) language, which is an extension of the SMV input
language [17]. Recent converter initiatives include a con-
verter from Ptolomy II to SpaceEx [42], and the HyLink
converter from SSMs to hybrid automata [36].

2. HYBRID MODEL CHECKERS
Hyst allows for the same model to be analyzed in several
hybrid system model checkers. Each tool has unique char-
acteristics and will have varying performance depending on
the features of the model. In this section a brief compari-
son of the different tools supported by Hyst is given, along
with their different features. For syntax and semantics, we
assume the hybrid automaton framework [3], particularly
the same setup as defined for SpaceEx (modulo explicitly
allowing nonlinear polynomials for expressions) [26].

2.1 SpaceEx
SpaceEx [26] is a symbolic model checker for affine hybrid
systems. It operates on symbolic states comprising of a dis-
crete location and a continuous region. Its reachability al-
gorithm can be represented as a fixed point computation:
S0 := postc(Init),Si+1 := Si ∪ postc(postd(Si)), where Init
stands for the initial states of the considered hybrid system,
postc(S) denotes the continuous post operator and postd(S)
is the discrete post operator.

The continuous post operator in SpaceEx can be done in
one of three scenarios: PHAVer [24], LGG [26], or STC [25].
The PHAVer scenario uses the constraint polyhedra repre-
sentation. The reachability computation is exact for the
class of hybrid systems with piecewise constant dynamics
as the PHAVer scenario uses the exact arithmetic, although
for affine dynamics the computed reachable sets of states is
rather coarse because the tool internally abstracts the affine
dynamics with piecewise constant ones. LGG performs bet-
ter on systems with affine dynamics through computation
of linear maps, Minkowski sums and convex hulls, using a
support function representation. The STC scenario extends
the ideas of the LGG scenario. It introduces the notion of
a flowpipe sampling. A flowpipe sampling maps every time
moment to a polyhedral enclosure of the states reachable at
that moment. In other words, the algorithm attributes to
every time moment the values of the support function on
the predefined template direction set.

Note that the reachability problem for hybrid systems is
undecidable. Therefore, the analysis termination is gener-
ally not guaranteed. The analysis still always terminates in

practice as the analysis time is restricted by the maximum
number of iterations, which essentially bounds the number
of steps in the fixed point computation.

SpaceEx can also analyze network automata, i.e. multiple
interacting automata, which enables compositional verifica-
tion. The tool supports three reachability scenarios which
use different underlying region representations.

PHAVer. This scenario essentially implements the algorithms
from the tool PHAVer [24], the redecessor of SpaceEx. PHAVer
scenario uses the contraint polyhedra representation and re-
lies on the PPL library [6] for this purpose. The reacha-
bility computation is exact for the class of hybrid systems
with piecewise constant dynamics as the PHAVer scenario
uses the exact arithmetic. However, the reachable set is a
rather coarse over-approximation in case of affine dynam-
ics because the tool internally abstracts the affine dynamics
with the piecewise constant ones. In contrast to other reach-
ability scenarios, the PHAVer scenario computes continuous
post operator for unbounded time horizon.

LGG [26]. The scenario is based on the support function
representation [34] which allows for the efficient computa-
tion of linear maps, Minkowski sums and convex hulls. The
support function ρR(`) of a region R with respect to the
direction ` ∈ Rn is defined as follows:

ρR(`) = max
x∈R

` · x

Then, the region R can be over-approximated by a template
polyhedron D induced by the finite set of template D =
{`1, . . . , `m}:

RD = {x ∈ Rn |
∧

`i∈D

`i · x ≤ ρR(`i)}

The LGG scenario generally scales much better than the
PHAVer scenario. On the opposite side, no exact arith-
metic is used and thus numerical errors can influence the
result. The continuous successors are computed only for the
finite time horizon. The continuous post operator works by
partitioning the time axis into small time intervals defined
by the sampling time. For each of those time partitions,
the postc operator computes an over-approximation of the
states reachable within this particular partition.

STC [25]. This scenario extends the ideas of the LGG sce-
nario. In particular, the STC scenario introduces the notion
of a flowpipe sampling. A flowpipe sampling maps every
time moment to a polyhedral enclosure of the states reach-
able at that moment. In other words, the algorithm at-
tributes to every time moment the values of the support
function on the predefined template direction set. Further-
more, the support function value is represented by an inter-
val [r−(t), r+(t)] where r−(t) and r+(t) under- and over-
approximate the support function value. By storing the
interval values, the algorithm can always ensure that the
introduced approximation error is below the user provided



Tool Dynamics Extra Inputs Representation Problem
SpaceEx (PHAVer) Affine n/a Polyhedra Unbounded reachability
SpaceEx (LGG) Affine Sampling time Support functions Unbounded reachability
SpaceEx (STC) Affine Sampling time Support functions Unbounded reachability
Flow* Nonlinear Order Cutoff, Error Interval, Time Step Taylor models Bounded reachability
HyCreate Nonlinear Min/max derivatives, Time Step Hyper-rectangles Bounded reachability
dReach Nonlinear Max time, bad states SMT Bounded model checking

Table 1: Summary comparison between tools supported by Hyst.

threshold.

2.2 HyCreate
HyCreate [7] is a tool which computes reachable states in a
way similar to mixed face-lifting [18], combined with sup-
port for pseudo-invariants [8]. This technique works by
over-approximating the reachable set of states by moving
the faces of a tracked polytope outward at the maximum
derivative near each face. Neighborhoods around each face
are constructed, and then the maximum derivative in the
outward direction is considered along each face. Time is ad-
vanced in such as way that guarantees no trajectories leave
the constructed neighborhoods. After time is advanced, a
new polytope provides a bound on the reach state at some
future time instant and the process repeats.

In HyCreate, states are tracked as N-dimensional rectangles
(intervals aligned with the axes). This can lead to wrapping-
effect error [37] for larger time bounds, which is somewhat
controlled though splitting tracked boxes into smaller states.
However, for large dimensional systems the boxes may need
to be split into an exponential number of smaller boxes,
such that the work needed to evaluate a certain passage of
time keeps increasing. Thus, it works best for low-dimension
systems. In HyCreate, a limit can be set to prevent split-
ting if too many boxes are being tracked, which has the
effect of letting the computation proceed at the price of over-
approximation error.

A time-step estimate is used in HyCreate that controls the
width of each of the neighborhoods. This parameter is var-
ied in our generator to obtain a desired runtime. One ben-
efit of HyCreate is that it can handle nonlinear dynamics.
The user inputs the derivative in each mode as a Java code
function with provides the maximum and minimum deriva-
tive in an arbitrary box of the state space. This is used
to determine the maximum outward derivative along each
face since the neighborhoods constructed near each face will
be N-dimensional rectangles. The invariants and resets are
also entered as Java code, which is then compiled and run
through the tool. The computation produces a visualization
as it’s progressing, and can output both the complete set
of rectangles as well as a visualization of the reach set pro-
jected onto any two dimensions as a .png file of arbitrary
size. In our converter, we used version 2.7 of HyCreate,
which also supports simulation. Thus, we show visualiza-
tions both from the reachability computation, as well as the
simulations.

2.3 Flow*
Flow* [15] is a tool which computes reach sets for nonlin-
ear hybrid systems using Taylor models [38] as a state-space
representation. The set of states is over-approximated at
each point in time using a single Taylor model with an or-

der that is configurable. A Taylor model is a polynomial
with interval terms for each of the variables, along with an
interval bloating term.

For example, the reachable set of states at a particular time
instant, for a two-dimensional system, might be represented
by the following Taylor Model, taken from the Flow* manual
[14]:

x = 1 + b2 − c+ [−0.02, 0.01]
y = a3 − b+ [0, 0.1]
a ∈ [−0.2, 0.2]
b ∈ [−0.2, 0.2]
c ∈ [−0.1, 0.1]

The order of a Taylor model is the maximum number of
variables multiplied together in each monomial. In the above
Taylor model, the order is 3, due to the a3 term.

Time is advanced in Flow* by repeated application of the
Picard iteration. This requires symbolically integrating the
Taylor model, which is not difficult since it is a polynomial
(or a polynomial Taylor expansion for non-polynomials).
The error interval is bloated to encompass the result after a
certain number of iterations (the Taylor model is trimmed to
have a maximum order, and the remaining terms are pushed
into the remainder interval). Time can then be advanced
again from the newly obtained Taylor model. Taylor mod-
els work well even for medium-dimension (∼ 10) nonlinear
systems, as long as the set of states being tracked remains
relatively small. For high accuracy, a high order is desired.
However, in high dimensions a lower order might be neces-
sary because the number of combinations of variables grows
quickly, so the number of terms in each polynomial can grow
as well; it is not uncommon to get hundreds of terms being
tracked for each variable.

Flow* allows the order of the Taylor model to be adaptive,
depending on the amount of error. This can allow the com-
putation to proceed quickly if the error remains low, while
high-accuracy in cases where it is needed. In Hyst, we used
the adaptive order setting between order 3 and 8. There is
also a time-step parameter in Flow* which determines the
time step to use in the Picard iteration. This parameter is
varied to obtain the desired runtime.

2.4 dReach and dReal
dReach is a tool for bounded reachability analysis (i.e., bounded
model checking [BMC]) of hybrid systems [29] that uses
the dReal satisfiability modulo theories (SMT) solver for δ-
complete decidability queries over the reals [27]. In dReach,
after conversion to the SMT representation, the continuous



variables of a hybrid automaton are represented as nullary
real-valued functions (i.e., symbolic real constants). The lo-
cations of a hybrid automaton are also represented as nullary
real-valued functions, albeit their constraints ensure they
correspond to bounded integers to create a one-to-one cor-
respondence with the finite set of locations. The continuous
dynamics are specified as ODEs, and invariants over contin-
uous variables are supported. Sets of states are represented
symbolically as formulas over these variables. The inputs to
dReach are a hybrid system model, an integer bound k ≥ 0,
and a safety property φ, and dReach unrolls the transition
and trajectory relations k times to check if φ is reachable in
exactly k iterations.

2.5 Tool Comparison
A summary of the output tools and comparison between
them appears in Table 1.

Verification Problem. Tools may be classified by the ver-
ification problem they address. All of the SpaceEx scenar-
ios target unbounded reachability for enabling verification
primarily of safety properties (invariants). Additionally, as
unbounded reachability is a generalization of time-bounded
reachability, SpaceEx may solve the time-bounded reacha-
bility problem. All the other tools focus on time-bounded
verification.

Networks and Compositions of Hybrid Automata. SpaceEx
supports composing networks of hybrid automata, whereas
the other tools work with flat automata. SpaceEx does in-
clude preliminary support for flattening which can be used
to interface with the other tools.

State Representation and Error Control. All tools main-
tain symbolic representations of reachable states, although
the specific representation and its possible error control ca-
pabilities differ. For example, SpaceEx uses either polyhedra
(in PHAVer scenario) or support functions (in STC and LGG
scenarios). Flow* works with Taylor models, HyCreate uses
sets of hyper-rectangles, and dReach utilizes symbolic for-
mulas in the SMT-LIB standard (effectively nonlinear real
arithmetic with transcendentals) [10].

Flows, Invariants, Guards, and Reset Mappings. SpaceEx
supports affine functions for flows (as affine ODEs), invari-
ants, and resets. The SpaceEx syntax, however, does not
restrict from using nonlinear functions (although the tool
itself will not compute reachability for such models). There-
fore, we can define nonlinear functions in SpaceEx XML
and translate them to the corresponding tool with Hyst.
Flow*, HyCreate, and dReach support nonlinear flows, in-
variants, and resets. All tools use may transition semantics,
so urgency may be modeled using appropriate invariant and
guard conditions.

Comparison Challenges. Given that Hyst can translate
the same model to multiple tools, a reasonable question is
which tool is best for a particular model. A comparison be-
tween tools is not a straightforward operation. First, the
problem the tools solve differs. SpaceEx typically solves an
unbounded verification problem, and typically terminates
based on a fixed-point check. Flow* and HyCreate solve

SpaceEx
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(other 
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Model 
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Figure 1: Hyst conversion architecture. SpaceEx XML
models specifying hybrid automata are translated to an in-
termediate representation (IR) inside Hyst, where model
transformation passes are performed. Then, the hybrid au-
tomaton is output in different syntax for input to other tools,
including HyCreate, Flow*, and dReach. It is not shown,
but the SpaceEx configuration file is also used, where, e.g.,
initial states and potentially bad states are specified.

time-bounded reachability, while dReach solves time-bounded
verification problems in a bounded model checking manner.
One way to force termination of SpaceEx to compare to
time-bounded reachability tools is to add a time variable
ṫ = 1 and add an invariant in every location that t ≤ Tmax.
Typically this is achieved by composing the original SpaceEx
hybrid automaton model of interest with a single-location
timed automaton with ṫ = 1 and invariant t ≤ Tmax, which
after composition ensures every location has the time vari-
able with dynamics ṫ = 1 and invariant t ≤ Tmax. Adding
such a variable, however, may affect tool performance.

Another issue is that the tools have various parameters which
affect accuracy and performance. The initial model file pro-
duced by Hyst may not have the optimal settings for the
model being considered. For comparison, we believe tool
developers need to detect reasonable parameters for models
being considered. A general parameter most tools have is
the notion of a sampling time or time step. One way to com-
pare which we plan to investigate is to modify this sampling
time until the runtimes of the tools are roughly equal, and
then examining the resultant output. Finally, the outputs of
the tools are typically in the internal representation of the
tools, and therefore difficult to compare. A conversion to a
common format, for example the bounding box at a point
in time, needs to be done prior to comparison.

3. CONVERTER ARCHITECTURE
The conversion architecture used in Hyst is shown in Fig-
ure 1. The tools takes as input a source file, parses it to an
intermediate representation (IR), then prints the resulting
output source format desired. Using the SpaceEx format
has a number of practical advantages: a number of existing
examples already exist in the format, there is a visual model
editor for these files, SpaceEx can import from the CIF for-
mat [30] and output SpaceEx XML, and there is preliminary
support in SpaceEx for hybrid automata flattening. As an
input format, the grammar specifying flows, guards, invari-
ants, and resets of the automata does not have any restric-
tions on being affine, so we use reuse the input format of
SpaceEx for Hyst and allow for nonlinear expressions. We
note that in its current version however, that SpaceEx can-
not analyze nonlinear examples as the algorithms it uses do
require affine expressions. In terms of output formats, the
supported tools are Flow*, HyCreate (both reachability and



simulation), and dReach, and output to other tools is part
of our planned future work.

Internally, the IR is currently a set of data structures in Java
which encode the modes, transitions, continuous variables,
flow differential equations, guards, and invariants. The in-
termediate representation may be modified prior to output
for a specific tool’s format through model transformation
passes. Passes can be viewed as a model-to-model conver-
sions. Some passes can aid in the exporting process. For
example, dReach requires that identity resets be explicitly
defined, whereas other tools do not. A model transforma-
tion pass is therefore run before writing a dReach source file
which adds identity resets to transitions which did not de-
fine them. Another model transformation pass can be used
to check and rename variables that are disallowed keywords
for specific tools. Finally, model transformation passes can
be used to modify the reachability computation itself. For
example, the method of pseudo-invariants [8] has previously
been shown to improve the accuracy and speed of the reach-
ability computation for multiple tools. Implementing it as
a model transformation pass allows all supported tools to
be able to use the technique. An example using this pass is
shown later in Section 4. Other candidate passes we plan
on implementing including over-approximating abstraction
techniques, such as hybridization. Once implemented in
Hyst, these techniques would not need to be reimplemented
for each tool to use the approach, saving implementation ef-
fort and reducing the likelihood of mistakes.

This architecture can effectively extend the allowed input
formats for the various tools. For example, compositions
of hybrid automata can be automatically flattened for tools
which do not support such semantics. However, this may
be infeasible for some systems due to the potentially ex-
ponential increase in the size of the flattened composition.
This is possible because the input format, SpaceEx’s XML
files, supports a general notion of compositions of hybrid
automata through the use of base components and network
components, in which base components are instantiated and
inputs/outputs are connected appropriately. For example, a
typical feedback plant/controller architecture may be mod-
eled in SpaceEx by an automaton for the plant, another for
the controller, and then their composition is specified where
the outputs of the plant are used as inputs by the controller
(and vice-versa).

However, in other tools support for compositions is mixed
(e.g., none of Flow*, HyCreate, or dReach support composi-
tions, although other recent tools like Passel [33] do support
it). One solution would be to add direct composition support
for each of these tools, a large implementation effort. With
Hyst, a composed hybrid automaton can immediately be
flattened using an option in SpaceEx (particularly -output-

system-file), then the flattened model can be output to
tools which do not natively support such semantics. There
are many performance downsides to this approach, although
it enables the use of complex compositional models in these
other tools as well through the use of our converter.

4. RESULTS
In the introduction, three classes of users were considered for
Hyst: (1) Users of verification tools, (2) developers of the

`off `on
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0 ≤ t ≤ Tmax

ẋ = −8 · (x− 30)

ṫ = 1
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H:
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Figure 2: Thermostat/heater example hybrid automaton.

(a) SpaceEx LGG (b) SpaceEx STC (c) SpaceEx PHAVer

(d) Flow*

(e) HyCreate2 Sim (f) HyCreate2

(g) dReach

Figure 3: Default reach set visualizations for ther-
mostat/heater hybrid automata example from Figure 2 for
the various output model files and tools.

tools, and (3) researchers who develop general techniques
which may be applicable to a wide variety of tools.

4.1 Users of Verification Tools
Users can use Hyst as a quick way to create workable model
files for all of the supported tools. We used Hyst to con-
vert numerous hybrid system models from different classes,
including typical affine and nonlinear examples. For the pur-
poses of illustration, we use the example of a non-deterministic
heater system interacting with the temperature in a room
measured by a thermostat, as shown in Figure 2 [31]. Al-
though a simple system, it is illustrative of most of the fea-
tures found in hybrid automata including invariants, guards,
flows, and non-determinism. More complicated benchmarks
have been converted using Hyst, however this system is suf-
ficient for reach-set illustration.

This system was converted by Hyst into the input format
of the various tools. Each tool was then run on the files,
producing a reach set as the output. The graphical results
for each of the tools are shown in Figure 3. For all tools
except dReach, these figures correspond to reachable states.
For dReach, the image corresponds to a witness counterex-



ample execution that leads to a bad (goal) set of states.
These models serve as initial starting points for users who
want to analyze a model, as they can immediately see the
rough performance of the various tools. As described ear-
lier, the tools contain tool-specific parameters which, after
generation using Hyst, can be further tweaked by the user.

We currently have about a dozen benchmarks which can be
run through the translator and executed by the various tools.
These examples range from biological systems, neuron mod-
els, power converters, and typical systems for evaluations of
nonlinear reachability methods. The full set of examples and
their converted models are available on the Hyst website1.
The conversion process for each model takes less than a sec-
ond and is negligible when compared with the reachability
computation runtime.

4.2 Tool Developers
For tool developers such output can also be illuminating.
One unexpected finding was that the visualization output
for a buck-boost converter differed between HyCreate2 and
Flow* for the same model, shown in Figure 4. If the pro-
duced reach sets do not intersect, this is indicative of a bug in
one of the tools (or in the translation process). In this case,
the issue was not caused by the reachability algorithm but
rather by the visualization output of Flow* being strictly six
digits after the decimal point, which is not sufficient for the
time scales considered for this fast-switching system. This
was confirmed by rescaling time in the model file (using mil-
liseconds as the X-axis instead of seconds), which corrected
the visualization of the reach set.

4.3 Researchers
Many research results are applicable to general hybrid au-
tomata models, and not only a specific tool. Reimplement-
ing these results in each tool would require significant effort,
and be an error prone process. Piecemeal implementation
of such results also is problematic because it is not clear if
a tool is superior to another one because of an optimization
performed on the model, or the underlying algorithm, or due
to subtle differences in the implementation of the technique.
By implementing generic model transformations in Hyst,
effort and errors can be reduced, and a more fine-grained
comparison of tools becomes possible.

For example, the time-scaling performed on the buck-boost
system in Figure 4 was done using a time-scaling model
transformation pass. Using a command-line flag to Hyst,
the user can select the pass to perform and time scale de-
sired, and the output model will be modified accordingly.

Another model transformation pass implemented in Hyst
is the insertion of pseudo-invariants (PI) [8]. This method
splits an individual mode of a hybrid automaton into several
using a set of provided conditions (called pseudo-invariants).
The modes after splitting have identical dynamics to the
mode they came from, and the transformed automaton is
bisimilar to the original automaton. However, these artifi-
cial discrete transitions allow accumulating the set of states
being tracked for tools that use flow-pipe construction meth-

1HYST and examples are available at: http://verivital.
uta.edu/hyst/

(a) HyCreate2 (no PI) (b) Flow* (no PI)

(c) HyCreate2 (with PI) (d) Flow* (with PI)

Figure 5: A single implementation of pseudo-invariants
within Hyst improves reachability computation for both
Flow* and HyCreate2.

ods. This can, in certain cases, serve to increase computa-
tion accuracy and reduce computation time.

To demonstrate this pass, we used the 2-d nonlinear model
of a FitzHugh-Nagumo Neuron, using the dynamics and ini-
tial states given by Dang et al. [20]. This system was con-
verted to both Flow* and HyCreate2 (which support non-
linear dynamics). Without pseudo-invariants, neither tool
can complete a single cycle within the state-space of the
system due to accumulated error. By passing the appro-
priate flag and parameters to Hyst, a modified model is
produced, for which an improvement in computation is vis-
ible for both of the tools. The reachability plots with and
without the PI pass are shown in Figure 5. Other model-
transformations passes that we plan to implement are vari-
ants of hybridization, both as approximation and inclusions,
as well as triangulation-based versions.

5. CONCLUSION
In this paper, we present a source-to-source conversion tool
called Hyst for hybrid automata. The tool is capable of
quickly converting a model to a number of hybrid system
model checking tools. Additionally, it supports model trans-
formation passes, which serve to both ease conversion, and
allow generic application of model-transformation research
results.

As future work, we plan to extend Hyst to more case stud-
ies and more tools, and we welcome contributions of tool
authors interested to integrate in the Hyst framework. In
particular, we plan to extend the output formats of Hyst to
other recent hybrid systems analysis tools, such as C2E2 [22],
the HyDI language [17] of HyCOMP/nuXmv, Ariadne [9],
KeyMaera [41], and other recent tools. he limitations of
the converter include a lack of compositions beyond using
SpaceEx to compute the composition (which may in general
blow up), and some limitations in automation for compar-
ing different tools. Additionally, as the language of SpaceEx
corresponds closely to the hybrid automata modeling frame-

http://verivital.uta.edu/hyst/
http://verivital.uta.edu/hyst/


(a) HyCreate2 (b) Flow* original (c) Flow* rescaled

Figure 4: The reach set computed by HyCreate2 and Flow* appears to differ. By rescaling time in the Flow* model, this is
confirmed as a result of the number of decimal digits Flow* outputs, rather than a bug in the tool.

work, other tools that support more general language defi-
nitions may be better suited as the source input format, and
we can envision extensions of Hyst as a general source-to-
source translation framework. Once composition is better
supported, we can envision integrating other tools like Pas-
sel [33].
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APPENDIX
A. HEATER SYSTEM INPUT AND OUTPUT
In this appendix, we show the tool inputs and outputs for a heater system interacting with the temperature in a room, as
shown in Figure 2. Sample input and output file for Hyst are below.

A.1 SpaceEx

Listing 1: SpaceEx heater example input system.

1 <?xml ve r s i on =”1.0” encoding=”iso −8859−1”?>
2 <sspaceex xmlns=”http ://www−verimag . imag . f r /xml−namespaces/ sspaceex ” ve r s i on =”0.2” math=”SpaceEx”>
3 <component id=”ofOnn”>
4 <param name=”x” type=”r e a l ” l o c a l =”f a l s e ” d1=”1” d2=”1” dynamics=”any” />
5 <param name=”t ” type=”r e a l ” l o c a l =”f a l s e ” d1=”1” d2=”1” dynamics=”any” />
6 <param name=”Tmax” type=”r e a l ” l o c a l =”f a l s e ” d1=”1” d2=”1” dynamics=”const ” />
7 <l o c a t i on id=”1” name=”o f f ” x=”361.0” y=”314.0” width =”218.0” he ight =”128.0”>
8 <invar iant>x &gt ;= 18 &amp ; 0 &l t ;= t &amp ; t &l t ;= Tmax</invar iant>
9 <f low>x ’ == −8 ∗ x &amp ; t ’ == 1</flow>

10 </locat i on>
11 <l o c a t i on id=”2” name=”on” x=”827.0” y=”331.0” width =”244.0” he ight =”126.0”>
12 <invar iant>x &l t ;= 22 &amp ; 0& l t ;= t &amp ; t &l t ;= Tmax</invar iant>
13 <f low>x ’ == −8 ∗ (x − 30) &amp ; t ’ == 1</flow>
14 </locat i on>
15 <t r a n s i t i o n source =”1” ta rge t=”2”>
16 <guard>x &l t ;= 18.1</guard>
17 < l a b e l p o s i t i o n x=”−31.0” y=”3.0” width =”76.0” he ight =”50.0” />
18 <middlepoint x=”579.0” y=”381.5” />
19 </t r an s i t i on >
20 <t r a n s i t i o n source =”2” ta rge t=”1”>
21 <guard>x &gt ;= 21.9</guard>
22 < l a b e l p o s i t i o n x=”−38.0” y=”−52.0” width =”78.0” he ight =”50.0” />
23 <middlepoint x=”591.0” y=”261.5” />
24 </t r an s i t i on >
25 </component>
26 <component id=”sys1”>
27 <param name=”x” type=”r e a l ” l o c a l =”f a l s e ” d1=”1” d2=”1” dynamics=”any” con t r o l l e d=”true ” />
28 <param name=”t ” type=”r e a l ” l o c a l =”f a l s e ” d1=”1” d2=”1” dynamics=”any” con t r o l l e d=”true ” />
29 <param name=”Tmax” type=”r e a l ” l o c a l =”f a l s e ” d1=”1” d2=”1” dynamics=”const ” c on t r o l l e d=”true ” />
30 <bind component=”ofOnn” as=”ofOnn 1 ” x=”295.0” y=”170.0” width =”58.0” he ight =”62.0”>
31 <map key=”x”>x</map>
32 <map key=”t”>t</map>
33 <map key=”Tmax”>Tmax</map>
34 </bind>
35 </component>
36 </sspaceex>

Listing 2: SpaceEx heater example input configuration.

1 system = sys1
2 i n i t i a l l y = ”x==20 & t==0 & Tmax = 0.20 & loc ( ofOnn 1 )==o f f ”
3 forb idden = ”x==19 & loc ( ofOnn 1 )==o f f ”
4 s c ena r i o = supp
5 d i r e c t i o n s = oct
6 set−aggregat ion = chu l l
7 sampling−time = 0.001
8 time−hor izon = 1.0
9 i t e r−max = 5

10 output−va r i ab l e s = ”t , x”
11 output−format = GEN
12 re l−e r r = 1 .0E−12
13 abs−e r r = 1 .0E−13
14 f lowpipe−t o l e r anc e = 0.001

A.2 Flow*

Listing 3: Flow* heater example input file.

1 hybrid r e a c h ab i l i t y
2 {
3 s t a t e var x , t
4
5 s e t t i n g
6 {
7 f i x ed s t eps .001
8 time .2
9 remainder e s t imat ion 1e−4

10 QR precond i t i on
11 adaptive order s { min 3 , max 8 }
12 cu t o f f 1e−15
13 p r e c i s i o n 53
14 output out
15 max jumps 99999999
16 pr in t on
17 }
18
19 modes
20 {
21 o f f
22 {



23 poly ode 1
24 {
25 x ’ = −8.0 ∗ x
26 t ’ = 1 .0
27 }
28 inv
29 {
30 t >= 0
31 t <= .2
32 x >= 18
33 }
34 }
35
36 on
37 {
38 poly ode 1
39 {
40 x ’ = −8.0 ∗ (x − 30 .0 )
41 t ’ = 1 .0
42 }
43 inv
44 {
45 t >= 0
46 t <= .2
47 x <= 22
48 }
49 }
50 }
51
52 jumps
53 {
54 o f f −> on
55 guard
56 {
57 x <= 18.1
58 }
59 r e s e t
60 {
61 }
62 pa r a l l e l o t op e aggregat ion {}
63
64 on −> o f f
65 guard
66 {
67 x >= 21.9
68 }
69 r e s e t
70 {
71 }
72 pa r a l l e l o t op e aggregat ion {}
73 }
74
75 i n i t
76 {
77 o f f
78 {
79 t in [ 0 , 0 ]
80 x in [ 20 , 20 ]
81 }
82 }
83 }

Listing 3 (Cont.): Flow* heater example input file.

A.3 HyCreate

Listing 4: HyCreate heater example input file.

1 <?xml ve r s i on =”1.0” encoding=”UTF−8”?>
2 <java ve r s i on =”1.7 .0 65 ” c l a s s=”java . beans . XMLDecoder”>
3 <ob j e c t c l a s s=”conta ine r s . HyCreateData”>
4 <void property=”automatonName”>
5 <s t r ing>heaterLygeros </s t r ing>
6 </void>
7 <void property=”dimensions”>
8 <s t r ing>x , t</s t r ing>
9 </void>

10 <void property=”globalText”>
11 <s t r ing >// Made us ing SpaceExExport from model f i l e . . / . . / examples / heaterLygeros / heaterLygeros . xml</s t r ing>
12 </void>
13 <void property=”i n i t i a l S t a t e s ”>
14 <s t r ing >20.0 , 20 .0 ; 0 .0 , 0 .0 ; o f f </s t r ing>
15 </void>
16 <void property=”modes”>
17 <void method=”put”>
18 <s t r ing>o f f </s t r ing>
19 <ob j e c t c l a s s=”conta ine r s . ModeData”>
20 <void property=”de r i v a t i v e ”>
21 <void method=”add”>
22 <s t r ing>return new In t e r va l (−8.0 ∗ $x , −8.0 ∗ $x ) ;</ s t r ing>
23 </void>
24 <void method=”add”>
25 <s t r ing>return new In t e r va l ( 1 . 0 , 1 . 0 ) ;</ s t r ing>
26 </void>
27 </void>
28 <void property=”inva r i an t”>
29 <s t r ing>return ( $t . min &l t ;= 0 .2 &amp;&amp ; $t .max &gt ;= 0 . 0 ) &amp;&amp ; ( $x .max &gt ;= 18 .0 ) ;</ s t r ing>
30 </void>
31 <void property=”minMaxPoints”>
32 <void method=”add”>



33 <s t r ing>return nu l l ; // d e r i v a t i v e has no min/max po int s in any box</s t r ing>
34 </void>
35 <void method=”add”>
36 <s t r ing>return nu l l ; // d e r i v a t i v e has no min/max po int s in any box</s t r ing>
37 </void>
38 </void>
39 <void property=”reg r idRat i o”>
40 <s t r ing >1.7 , 1.7</ s t r ing>
41 </void>
42 </object>
43 </void>
44 <void method=”put”>
45 <s t r ing>on</s t r ing>
46 <ob j e c t c l a s s=”conta ine r s . ModeData”>
47 <void property=”de r i v a t i v e ”>
48 <void method=”add”>
49 <s t r ing>return new In t e r va l (−8.0 ∗ ( $x − 30 .0 ) , −8.0 ∗ ( $x − 30 .0 ) ) ;</ s t r ing>
50 </void>
51 <void method=”add”>
52 <s t r ing>return new In t e r va l ( 1 . 0 , 1 . 0 ) ;</ s t r ing>
53 </void>
54 </void>
55 <void property=”inva r i an t”>
56 <s t r ing>return ( $t . min &l t ;= 0 .2 &amp;&amp ; $t .max &gt ;= 0 . 0 ) &amp;&amp ; $x . min &l t ;= 22.0;</ s t r ing>
57 </void>
58 <void property=”minMaxPoints”>
59 <void method=”add”>
60 <s t r ing>return nu l l ; // d e r i v a t i v e has no min/max po int s in any box</s t r ing>
61 </void>
62 <void method=”add”>
63 <s t r ing>return nu l l ; // d e r i v a t i v e has no min/max po int s in any box</s t r ing>
64 </void>
65 </void>
66 <void property=”reg r idRat i o”>
67 <s t r ing >1.7 , 1.7</ s t r ing>
68 </void>
69 </object>
70 </void>
71 </void>
72 <void property=”opt ions”>
73 <void property=”plotOptions”>
74 <void property=”plotXDimensionIndex”>
75 <int >1</int>
76 </void>
77 <void property=”plotYDimensionIndex”>
78 <int >0</int>
79 </void>
80 <void property=”visua l i zeAfterComputat ion”>
81 <boolean>f a l s e </boolean>
82 </void>
83 <void property=”visual izeDuringComputat ion”>
84 <boolean>f a l s e </boolean>
85 </void>
86 </void>
87 <void property=”reachab i l i tyTime”>
88 <s t r ing >0.2</ s t r ing>
89 </void>
90 <void property=”s imulat ionOpt ions”>
91 <void property=”simulationType”>
92 <ob j e c t c l a s s=”java . lang .Enum” method=”valueOf”>
93 <c l a s s>con ta ine r s . ModelSimulationOptions$SimulationType</c l a s s>
94 <s t r ing>REACHABILITY ONLY</s t r ing>
95 </object>
96 </void>
97 </void>
98 <void property=”timeStep”>
99 <s t r ing >0.001</ s t r ing>

100 </void>
101 </void>
102 <void property=”t r a n s i t i o n s ”>
103 <void method=”add”>
104 <ob j e c t c l a s s=”conta ine r s . Transit ionData”>
105 <void property=”from”>
106 <s t r ing>o f f </s t r ing>
107 </void>
108 <void property=”guard”>
109 <s t r ing>return $x . min &l t ;= 18.1;</ s t r ing>
110 </void>
111 <void property=”to”>
112 <s t r ing>on</s t r ing>
113 </void>
114 </object>
115 </void>
116 <void method=”add”>
117 <ob j e c t c l a s s=”conta ine r s . Transit ionData”>
118 <void property=”from”>
119 <s t r ing>on</s t r ing>
120 </void>
121 <void property=”guard”>
122 <s t r ing>return ( $x .max &gt ;= 21 .9 ) ;</ s t r ing>
123 </void>
124 <void property=”to”>
125 <s t r ing>o f f </s t r ing>
126 </void>
127 </object>
128 </void>
129 </void>
130 <void property=”ve r s i onS t r i ng”>
131 <s t r ing>F i l e Vers ion 3</s t r ing>
132 </void>
133 </object>
134 </java>

Listing 4 (Cont.): HyCreate heater example input file.



A.4 dReach

Listing 5: dReach heater example input.

1 // Hybrid Automaton in dReach
2 // Converted from f i l e : . . \ . . \ examples\heaterLygeros\heaterLygeros . xml
3
4 //Vars
5 [ 0 , 1000] time ;
6 [−1000 ,1000] x ;
7 [−1000 ,1000] c l ock ;
8
9 // o f f

10 {
11 mode 1 ;
12 invt :
13 ( and (x >= 18 .0 ) ( and (0 . 0 <= clock ) ( c lock <= 0 .2 ) ) ) ;
14 f low :
15 d/dt [ x ] = −8.0 ∗ x ;
16 d/dt [ c l ock ] = 1 . 0 ;
17
18 jump :
19 // o f f −> on (1 −> 2)
20 (x <= 18 .1 ) ==> @2(and (x ’ = x) ( c lock ’ = c lock ) ) ;
21 }
22 // on
23 {
24 mode 2 ;
25 invt :
26 ( and (x <= 22 .0 ) ( and (0 . 0 <= clock ) ( c lock <= 0 .2 ) ) ) ;
27 f low :
28 d/dt [ x ] = −8.0 ∗ (x − 30 .0 ) ;
29 d/dt [ c l ock ] = 1 . 0 ;
30
31 jump :
32 // on −> o f f (2 −> 1)
33 (x >= 21 .9 ) ==> @1(and (x ’ = x) ( c lock ’ = c lock ) ) ;
34 }
35
36 i n i t : @1 ( and (x = 20 .0 ) ( and ( c lock = 0 . 0 ) ) ) ;
37
38 goa l : @1 ( and (x = 20 .0 ) ( and ( c lock = 0 . 0 ) ) ) ;
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