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Abstract Order-reduction is a standard automated approximation technique for
computer-aided design, analysis, and simulation of many classes of systems, from
circuits to buildings. For a given system, these methods produce a reduced-order
system where the dimension of the state-space is smaller, while attempting to pre-
serve behaviors similar to those of the full-order original system. To be used as a
sound abstraction for formal verification, a measure of the similarity of behavior
must be formalized and computed, which we develop in a computational way for a
class of linear systems and periodically-switched systems as the main contributions
of this paper. We have implemented the order-reduction as a sound abstraction
process through a source-to-source model transformation in the HyST tool and use
SpaceEx to compute sets of reachable states to verify properties of the full-order sys-
tem through analysis of the reduced-order system. Our experimental results suggest
systems with on the order of a thousand state variables can be reduced to systems
with tens of state variables such that the order-reduction overapproximation error is
small enough to prove or disprove safety properties of interest using current reacha-
bility analysis tools. Our results illustrate this approach is effective to alleviate the
state-space explosion problem for verification of high-dimensional linear systems.

Keywords Abstraction; model reduction; order reduction; verification; reachability
analysis

1 Introduction

The state-space explosion problem is a fundamental challenge in model checking and
automated formal verification that has received significant attention from the ver-
ification community. Roughly, the state-space explosion problem is that the size of
the state-space of systems scales exponentially or combinatorially with their dimen-
sionality, which in turns causes formal computational analyses of these systems to
scale similarly. Among many solutions, abstractions based on the concepts of exact
and approximate simulation and bisimulation relations are effective approaches to
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obtain smaller state spaces by abstracting away information that is not needed in
the verification process. Such abstractions have been applied broadly to simplify the
controller synthesis and safety verification process of complex systems. Applications
of these abstractions can be found in many fields such as embedded systems [Hen-
zinger and Sifakis (2006)], biological systems [Danos and Laneve (2004); Regev et al.
(2004); Asarin and Dang (2004)], continuous and hybrid systems models of cyber-
physical systems (CPS) [Alur et al. (2000); Belta et al. (2005); Girard and Pappas
(2007b); Girard et al. (2008)], and stochastic systems [Wang et al. (2015)].

Model reduction techniques have been developed and applied widely in con-
trols [Antoulas et al. (2001)], but are typically approximations and not sound abstrac-
tions that may be used in formal verification. From a high-dimensional (“full-order”)
original system, model reduction can obtain automatically a simplified (“reduced-
order”) system with lower-dimensionality that is computationally easier to, for ex-
ample, analyze, design controllers for, and simulate.

A key difference between model reduction and abstraction relies on dealing with
the system’s initial condition and inputs. In model reduction, the inputs’ values
remain the same and the initial set of system states, which is an important factor in
verification with reachability analysis, is usually assumed to be the zero set. Thus,
order reduction may not be sound as it is an approximation that may not have
bounded errors and may be subject to numerical errors, while a guaranteed error
bound (“conservative approximation”) is necessary to define a sound abstraction for
verification. In contrast, the initial condition is always taken into account and the
inputs’ values may change in the context of bisimulation-based abstraction.

In order to be able to use model reduction as a sound abstraction for formal
verification, we need to consider both the initial conditions and inputs and then
present additional reasoning to derive error bounds for how far off the executions of
the reduced-order system may be from those of the full-order system. Formalizing
these issues and addressing them is the main objective of this paper, which we then
use to derive an automated order-reduction abstraction that is sound, and use it to
verify high-dimensional (with upwards of hundreds to thousands of state variables)
continuous and periodically switched systems.

1.1 Related Work

Exact bisimulation relation-based abstractions for safety verification and controller
synthesis have been investigated widely in the last decade [Pappas (2003); van der
Schaft (2004); Tanner and Pappas (2003); Tabuada and Pappas (2004)]. In this
context, the outputs of the the abstract system capture exactly the outputs of the
original system. As pointed out in [Girard et al. (2008); Girard and Pappas (2007a)],
the term of “exact” is not adequate when dealing with continuous and hybrid sys-
tems observed over real numbers since there may be numerical errors in observation,
noise, among other nonidealities. To obtain an abstraction that guarantees more ro-
bust relationships between systems, approximate bisimulation relations have been
proposed and studied extensively in recent years [Girard and Pappas (2005); Girard
et al. (2008); Girard and Pappas (2007a); Julius (2006); Girard et al. (2006); Islam
et al. (2015)]. The main advantage of such approximate relations is that they allow
a bounded error δ which describes how far off the executions of the abstraction may
be from those of the original system. Then, verifying whether the executions of the
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original system reach an unsafe region U can be turned out to verify whether the
executions of the abstraction (with much lower dimension) reach the δ-neighborhood
of the unsafe region U . Thus, finding an efficient way to determine a tight bound of
the error becomes an essential task for this approach. In particular, a computation
framework has been proposed and integrated in a Matlab toolbox called Matisse to
find an abstraction from the original linear system and calculate the bound of their
output mismatch [Girard and Pappas (2007a)]. Note that in [Girard and Pappas
(2007a)], the error bound is called as a precision. The proposed method shows a
great benefit when it can deal both stable and unstable systems. In this framework,
computing the error bound is basically based on solving a set of linear matrix in-
equality (LMI) and optimization problem on the sets of initial states and inputs. The
computation complexity increases polynomially along with the size of the system.
In addition, in some cases, due to the ill-condition of some matrices in computation
process, the error bound computed may be very conservative and thus may produce
an abstraction that is not useful for verification.

Model reduction techniques have been applied for formal verification of continu-
ous and hybrid system [Han and Krogh (2004); Han (2005)]. These techniques rely
on output reach sets, which combines the set of reachable states and an observation
matrix. This concept is useful in safety verification because, for a given system, we
are usually interested in the safety requirements of some specific important states or
their combinations which can be declared as the outputs of the system. Particularly,
the authors use a reduced-order model and its output error bound compared with
full-order model to overapproximate the output reach set of the original system [Han
and Krogh (2004)]. Thus, determining a tight bound of the error is essential. Intu-
itively, the error between full-order model and its reduced-order model is composed
of two separate errors. The first error corresponds to the zero-input response (i.e,
there is no control input) and the second error corresponds to the zero-state response
(i.e., the initial state of the system is zero). The authors use simulation to determine
the bounds of these errors before combining them as a total bound. The first error
bound is determined by simulating the the full-order system and the reduced model
from each vertice of a polyhedral initial set of states. The advantages of simulation
is it can derive tight bounds of these errors. The drawback of using simulation is
the number of simulations increases exponentially with the dimension of the poly-
hedron, since the number of vertices of a polyhedron increases exponential with the
dimensionality (for example, an n-dimensional hyperbox has 2n vertices). Thus, it
may be infeasible to perform enough simulations for a high-dimensional system.

Reachability analysis of large-scale affine systems has also been investigated with
Krylov subspace approximation methods to deal with state-space explosion [Han
and Krogh (2006)]. However, this approach requires the input to the system to be
constant, while in contrast, in our work, we consider a more general class of systems
with varying inputs.

Contributions and Organization. In this paper, we develop the order-reduction ab-
straction for safety verification of high-dimensional linear systems. The main contri-
butions of this paper are: (a) a computationally efficient method to derive an output
abstraction from high-dimensional linear systems with an error bound for each ele-
ment of the outputs, where this error is essentially the sum of two separate errors
caused by the initial set of states and the control inputs; (b) establishing soundness
of using this output abstraction to verify the safety requirements of the original sys-
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tem with a significantly lower computation cost; (c) an extension of these results
to a class of periodically switched linear systems; and (d) the implementation of
the methods as a model transformation pass within the HyST model transformation
tool [Bak et al. (2015)], along with a thorough evaluation comparing our approach
to similar existing order-reduction and approximate bisimulation-based abstraction
methods.

Our computational framework has been tested and compared in detail with simi-
lar results through a set of benchmarks [Girard and Pappas (2007a); Han and Krogh
(2004)]. Our empirical evaluation illustrates that our method not only works effi-
ciently for small and medium-dimensional systems (several to less than a hundred di-
mensions) as existing methods [Girard and Pappas (2007a); Han and Krogh (2004)],
but also can be applied to high-dimensional systems (with a hundred to a thousand
dimensions) where the existing methods are infeasible to apply due to either com-
putational complexity or finding overly conservative error bounds. The error bound
value and computation time of these different methods have been compared and
discussed in our paper to show the advantages and tradeoffs of our approach.

Besides improving the computational framework, we also establish soundness
of our method using the output abstraction to verify the safety specifications of
the original full-order system using an approximate bisimulation relation argument.
In [Girard and Pappas (2007a)], the authors use the general concept of set neigh-
borhood to transform the safety specification of the original system. However, in
some cases when the safe and unsafe regions are described by polytopes or ellipsoids
that are often used, for example in SpaceEx [Frehse et al. (2011)] and the Ellipsoid
Toolbox [Kurzhanskiy and Varaiya (2006)], a more precise transformed safety speci-
fication can be derived by our element-to-element approach. The transformed safety
specification need to satisfy the following safety relation property: (1) if the output
abstraction is safe (i.e., it satisfies the transformed safety specification), then the
original system is safe, and (2) if the abstraction is unsafe (it does not satisfy the
transformed safety specification), then the original system is unsafe. Since we verify
safety using the output abstraction, the computation cost of the verification process
is significantly reduced. Moreover, our approach is very useful for verifying safety
of high-dimensional systems that the existing verification tools may not successfully
analyze directly. This improvement is shown through our evaluation of computation
complexity of safety verification for the original full-order system and its different
output abstractions (Section 6, Table 5). Our method has been implemented as a
source-to-source model transformation in the HyST tool [Bak et al. (2015)], which
makes it easy to combine different verification tools, such as SpaceEx [Frehse et al.
(2011)], Flow* [Chen et al. (2013)] and dReach [Kong et al. (2015)] to verify safety
property of high-dimensional linear systems.

The remainder of the paper is organized as follows. Section 2 gives definitions of
output reach set, output abstraction, safety specification, safety verification problem
and safety specification transformation for a class of linear time invariant (LTI)
systems. Section 3 presents methods to find output abstractions of the LTI systems
using the balanced truncation model reduction method. Section 4 discusses how
to verify safety properties for a full-order LTI system using its output abstraction.
Section 5 extends the results to a class of periodically switched systems in which the
state of the system is re-initialized at every switching instance. Section 6 describes
our implementation of the method in a prototype tool, and presents a number of
examples to illustrate and evaluate the benefits of our method.
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2 Preliminaries

In this section, we introduce definitions used throughout the paper including output
reach sets [Han and Krogh (2004)], output abstractions, safety specifications, the
safety verification problem, and safety specification transformation.

Definition 1 An n-dimensional LTI system is denotedMn(y|{x, u})〈A,B,C〉 (writ-
ten in short as Mn). It has the following dynamic equations:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t),

where x(t) ∈ Rn is the system state, y(t) ∈ Rp is the system output, u(t) is the control
input, A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n.

The initial set of states of Mn is denoted by X0(Mn) ⊆ Rn, and we write initial
conditions as x(0) ∈ X0(Mn). The set of control inputs of Mn is U ⊆ Rm, and we
write particular controls as u(t) ∈ U. The state of Mn is updated from state x to the
new state x′ over intervals of real time according to the linear differential equation
Ax+Bu, and the behaviors of the system is defined in this paper as the trajectories
of the output y(t) over intervals of real time.

Next, we present the output reach set defined in related approaches using order
reduction as a sound abstraction [Han and Krogh (2004)].

Definition 2 Output Reach Set [Han and Krogh (2004)].Given an LTI Mn, a set of
control inputs U, and an initial set X0(Mn), the output reach set at a time instant
t is:

Rt(Mn) ∆= {y(t, u, x0)|y(t, u, x0) = CeAtx0 +
∫ t

t0

CeA(t−τ)Bu(τ)dτ},

where x0 ∈ X0(Mn) and u(t) ∈ U.

The output reach set over an interval of time [t0, tf ] for t0 ≤ tf is:

R[t0,tf ](Mn) ∆=
⋃

t∈[t0,tf ]

Rt(Mn).

In the remainder of the paper, we suppose t0 = 0. Next, we define an output
abstraction, which is a formalization of the reduced-order system that will be used
to verify properties of the full-order system.

Definition 3 Output Abstraction.The k-dimensional LTI system Mδ
k , p < k ≤ n

described by:

ẋr(t) = Arxr(t) +Bru(t),
yr(t) = Crxr(t),

where xr(t) ∈ Rk, yr(t) ∈ Rp, Ar ∈ Rk×k, Br ∈ Rk×m, Cr ∈ Rp×k, is called a
k-dimensional output abstraction of Mn if, for the error bound δ = [δ1, δ2, . . . , δp]T ,
where each δi is a finite positive real, we have:

1. ∀x(0) ∈ X0(Mn) and u ∈ U, ∃xr(0) ∈ X0(Mδ
k ) such that, ∀t ≥ 0,

∥∥yi(t)− yir(t)∥∥ ≤
δi, 1 ≤ i ≤ p.
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where yi(t) is the ith component of the output y at time t, and ‖·‖ denotes the
Euclidean norm.

If we can find an output abstraction M δ
k , then its behaviors will approximate within

δ the behaviors of the full-order system Mn for all time.

Definition 4 Safety Specification. A safety specification S(Mn) of an LTI system
Mn formalizes the safety requirements for the output y of Mn, and is a predicate
over the output y of Mn. Formally, S(Mn) ⊆ Rp.

Definition 5 Safety Verification. The time-bounded safety verification problem is to
verify whether the system Mn satisfies a safety specification S(Mn) over an interval
of time. WhetherMn is safe or unsafe is defined over an interval of time [0, tf ], which
is described formally in terms of the output reach set as:

R[0,tf ](Mn) ∩ ¬S(Mn) = ∅ ⇔Mn � S(Mn),
R[0,tf ](Mn) ∩ ¬S(Mn) 6= ∅ ⇔Mn 2 S(Mn).

In the remainder of the paper, we will assume tf is finite and focus on time-bounded
safety verification, albeit the general framework we develop and error bounds we
derive are applicable to time-unbounded verification where tf → ∞. Under this
assumption, we fix tf to some positive real. If Mn satisfies S(Mn), then it is safe
and we write Mn � S(Mn). If Mn does not satisfy S(Mn), then it is unsafe and we
write Mn 2 S(Mn).

Definition 6 Safety Specification Transformation. The safety specification trans-
formation is the process of finding the corresponding safety (or dually, unsafe)
specification for the output abstraction M δ

k denoted by S(M δ
k ) ∈ Rp (and dually

U(M δ
k ) ∈ Rp) from the safety specification S(Mn) of the full-order system Mn to

guarantee the safety relation defined by:

R[0,tf ](Mδ
k ) ∩ ¬S(M δ

k ) = ∅ ⇒Mn � S(Mn),
R[0,tf ](Mδ

k ) ∩ U(M δ
k ) 6= ∅ ⇒Mn 2 S(Mn).

(1)

3 Output Abstractions from Balanced Truncation Reduction

The balanced truncation model reduction is an effective method to find reduced
models for large scale systems. Balanced truncation is based on Singular Value De-
composition (SVD) [Moore (1981)] and uses a balanced projection to transform a
system to an equivalent balanced system where the states are arranged in descending
degrees of their controllability and observability. Informally, the degrees of control-
lability and observability are measures to check how controllable and observable a
given system is. For further details, we refer readers to [Moore (1981); Silverman and
Meadows (1967)]. The k-order reduced model is then obtained by selecting the first
k states in the state vector and truncating (i.e., projecting away or eliminating) the
other n−k states. The process of determining the reduced-order model’s matrices is
well-known, and it is briefly described here. We refer readers to [Moore (1981)] for
further details.
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3.1 Order Reduction with Balanced Truncation Method

For an LTI system Mn, the controllability gramian Wc and observability gramian
Wo of Mn are the solutions of the following Lyapunov equations,

AWc +WcA
T +BBT = 0

ATWo +WoA+ CTC = 0.

It should be noticed that Wc and Wo are symmetric and positive definite. The
Hankel singular value σi is defined as the square root of each eigenvalue λi of WcWo,

σi = (λi(WcWo)
1
2 ).

The first step in balanced model reduction method is to implement a balanced
transformation x̃(t) = Hx(t), H ∈ Rn to transform Mn to an equivalent balanced
system M̃n, where the controllability and observability gramian W̃c, W̃o satisfy:

W̃c = W̃o = Σ =


σ1

σ2
. . .

σn

 ,

for σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σn−1 ≥ σn. The transformation matrix H can be computed
as follows.

SinceWc is symmetric and positive definite, we can factor it asWc = GGT , where
G is invertible. There exists an orthogonal transformation K, (i.e. KKT = I, where
I is an identity matrix) such that GTWoG = KΣ2KT . Then, the transformation
matrix H is defined as:

H = Σ
1
2KTG−1.

Applying transformation to the system Mn, we have the equivalent balanced
system M̃n with:

˙̃x(t) = Ãx̃(t) + B̃u(t)
y(t) = C̃x̃(t),

where Ã = HAH−1, B̃ = HB and C̃ = CH−1. The matrices of M̃n can be parti-
tioned as:

Ã =
(
Ã11 Ã12
Ã21 Ã22

)
, B̃ =

(
B̃1
B̃2

)
, C̃ =

(
C̃1 C̃2

)
,

where Ã11 ∈ Rk×k, B̃1 ∈ Rk×m, and C̃1 ∈ Rp×k, and the other matrices are of
appropriate dimensionality. Finally, the k-dimensional reduced system Mk of Mn is
defined as:

ẋr(t) = Arxr(t) +Bru(t)
yr(t) = Crxr(t).

(2)

where Ar = Ã11, Br = B̃1 and Cr = C̃1. The initial set of Mk is X0(Mk) =
{SHx0|x0 ∈ X0(Mn)}, where S =

(
Ik×k 0k×(n−k)

)
.

The balanced truncation method obtains the system matrices of the k-dimensional
reduced system. Next, we investigate the error between the outputs of the full-order
system and its k-dimensional reduced system.
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3.2 Determining the Error Bound δ

The solution of a LTI system can be decomposed into two parts. The first part corre-
sponds to zero control input (i.e. u(t) = 0 for all t) and the second part corresponds
to zero initial state (i.e., x0 = 0). Note that x0 ≡ x(t = 0). The solutions of Mn and
Mk are given as follows:

y(t) = y0 + yu(t), yr(t) = yr0 (t) + yru(t)

y0(t) = CeAtx0, yu(t) =
∫ t

0
CeA(t−τ)Bu(τ)dτ

yr0 (t) = Cre
Artxr0 , yru(t) =

∫ t

0
Cre

Ar(t−τ)Bru(τ)dτ

x0(t) ∈ X0(Mn), xr0 (t) ∈ X0(Mk), u(τ) ∈ U.

The error between the full-order systemMn and its k-dimensional reduced system
Mk at time t is given as follows:

e(t) = y(t)− yr(t) = e1(t) + e2(t),where
e1(t) = y0(t)− yr0 (t), and e2(t) = yu(t)− yru(t).

(3)

The error e1 relates to the zero input state responses of the full-order system
and the output abstraction; that is, the responses are only caused by the initial set
of states. The error e2 relates to the zero state responses; that is, the responses are
only caused by the control inputs. Note that e1 and e2 are both time varying and
e1(t), e2(t) ∈ Rp where p is the output dimensionality.

To obtain our main results in computing the error bounds, in the rest of this
paper, we consider the (n+ k)-dimensional augmented system as follows,

˙̄x = Āx̄+ B̄u =
(
Ã 0
0 Ar

)
x̄+

(
B̃
Br

)
u,

ȳ = C̄x̄ =
(
C̃ −Cr

)
x̄,

where x̄ =
(
Hx SHx

)T .
It is easy to see that the output of the augmented system is the error between

the n-dimension full-order system and its k-dimensional reduced system. Thus, deter-
mining the error bound δ is equivalent to determining the bounds of the augmented
system’s outputs in which the bound of e1 corresponds to the zero input response,
while the bound of e2 relates to the zero state response of the augmented system.

A theoretical bound of e1 can be given with the following theorem.

Theorem 1 Let x̄0 =
(
Hx0 SHx0

)T , then the error e1 between the full-order sys-
tem Mn and its k-dimensional reduced system Mk satisfies the following inequality
for all t ∈ R≥0: ∥∥ei1(t)

∥∥ ≤ λmax(C̄Ti C̄i) · sup
x0∈X0

‖x̄0‖ , 1 ≤ i ≤ p,

where R≥0 is the set of non-negative real numbers, C̄i is the row i of the matrix C̄,
and ei1(t) is the ith element of vector e1(t).
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The proof of Theorem 1 is given in Appendix 8.1.
Although the computation cost of the theoretical bound of e1 is small since it

only relates to determining supx0∈X0 ‖x̄0‖, the result may be very conservative in
the case that the initial set of states is far from the zero point. Thus, as can be seen
in Section 6, it is efficient to use Theorem 1 to compute the bound of e1 if the initial
set of states is close to zero point.

To reduce the conservativeness of Theorem 1, we also propose an optimization
method to compute a tighter bound of e1. Nevertheless, the computation cost of
the optimization method is larger than using Theorem 1. This is the tradeoff be-
tween obtaining an accuracy bound of e1 and improving the computation time. An
optimization method is given in the following theorem.

Theorem 2 Let x̄0 =
(
Hx0 SHx0

)T and P0 > 0 is the solution of the following
optimization problem:

P0 = min(trace(P )) subject to
P > 0, ĀTP + PA < 0, C̄Ti C̄i ≤ P

where C̄i is the row i of the matrix C̄. Then, the error e1 between the full-order system
Mn and its k-dimensional reduced system Mk satisfies the following inequality for
all t ∈ R≥0: ∥∥ei1(t)

∥∥ ≤ sup
x0∈X0

√
x̄T0 P0x̄0, 1 ≤ i ≤ p,

where ei1(t) is the ith element of vector e1(t).

The proof of Theorem 2 is given in Appendix 8.1.
Now, we consider how to determine the bound of e2, which corresponds to the

zero state responses of the augmented system. The theoretical bound of e2 is ob-
tained in the following theorem by exploiting the concept of bounded input bounded
output stability (BIBO) and the L1 error bound in the impulse response of balanced
truncation model reduction [Obinata and Anderson (2012)].

Theorem 3 The error e2 between the full-order system Mn and its k-dimensional
reduced system Mk satisfies the following inequality for all t ∈ R≥0:

∥∥ei2(t)
∥∥ ≤ (2

n∑
j=k+1

(2j − 1)σj) · ‖u‖∞ , 1 ≤ i ≤ p,

where ei2(t) is the ith element of vector e2(t).

The proof of Theorem 3 is given in Appendix 8.1.

Remark 1 As can be observed from Theorem 3, the theoretical bound of e2 depends
on the singular value σj , k + 1 ≤ j ≤ n. Therefore, in the case of the singular
values are large, the theoretical bound of e2 becomes large and may be not useful.
Moreover, Theorem 3 derives the same error bounds ei2 for each pair (yiu, yiru) for
each dimension 1 ≤ i ≤ p. Thus, Theorem 3 may be more useful for systems that
have high dimensions and small singular values.
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After determining the bounds e1 and e2, the overall error bound δ = [δ1, δ2, ..., δp]T
between the outputs of Mn and Mk obtained from (3) can be expressed as follows:

‖yi(t)− yr,i(t)‖ ≤ δi, 1 ≤ i ≤ p. (4)

where δi =
∥∥ei1(t)

∥∥+
∥∥ei2(t)

∥∥.
Remark 2 We note that the bound δ can be obtained using different methods in
which each method has both benefits and drawbacks. For example, in contrast to
our above results, in [Han and Krogh (2004)], the authors propose a simulation-
based approach to determine these error bounds. To determine the bound of e1, the
author simulate the full-order system and the reduced system from each vertex in a
polyhedral representation of the initial set of states. This method gives a very tight
bound of e1. The drawback is the number of simulations may explode. For example,
if the initial set is a hypercube in 100-dimensions, we have to simulate the full-order
system and its reduced system with 2n = 2100 vertices, which is infeasible even if each
simulation takes little time. The bound of e2 is determined by integrating the norm of
the impulse response of the augmented system via simulation. This method is useful
since it gives a tight bound of e2 with only m simulations, where m is the number
of inputs. In a different way without separately computing the bounds of e1 and e2,
the error bound δ can be calculated by solving a set of LMI optimization problem on
sets of initial states and inputs [Girard and Pappas (2007a)]. This approach shows
advantages when dealing with small and medium-dimensional systems (less than 50
dimensions) and it works for both stable and unstable systems. When the system
dimension is large, the error bound obtained is overly conservative and may not
useful.

Discussion. Although simulation-based methods can be used to determine the bounds
of e1 and e2, numerical issues in simulation may lead to unexpected results (unsound
results) which are smaller than the actual error bounds. Let us clarify the problem
first and then propose a technique under an assumption to make the result obtained
via simulation sound. This problem has not been addressed previously in [Han and
Krogh (2004)].

Assume that the actual values of the bounds of e1 and e2 are ē1 and ē2 re-
spectively, and the values of error bounds we get from simulation are ẽ1 and ẽ2. The
numerical inaccuracy in simulation can be formulated as ē1 = ẽ1±ε1 and ē2 = ẽ2±ε2.
The actual overall bound δ is ē1 + ē2 which satisfies the following constraint:

δ = ē1 + ē2 = ẽ1 + ẽ2 ± ε1 ± ε2.

From the above equation, it is easy to see that if we use the simulation bounds of
e1 and e2 to calculate δ, then the result may be unsound due to numerical issues (i.e.
if ±ε1 ± ε2 > 0). To handle this, we can assume that the absolute numerical error in
simulation |εi|, i = 1, 2 is smaller than γ percent of the simulation value ẽi, i = 1, 2.
Then, the simulation error bound can be used as a sound result by bloating the
simulation error bound using following equation.:

δ = (1 + γ)(ẽ1 + ẽ2).
The soundness of error bounds δ computed using Theorem 1, Theorem 2, Theo-

rem 3, and the methods of [Girard and Pappas (2007a)] are guaranteed since these
methods do not have numerical issues that may arise in simulation-based methods.
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3.3 Output abstraction and δ-approximation relation

Lemma 1 Given an asymptotically stable LTI systemMn, there exists a k-dimensional
output abstraction Mδ

k of Mn.

Proof Assume that we have an asymptotically stable LTI systemMn, using balanced
truncation method in Section 3.1, we can obtain a k-dimensional reduced systemMk.
Moreover, from Section 3.2, for any x(0) ∈ X0(Mn), there exists xr(0) = SHx(0) ∈
X0(Mk) such that the distance between each pair of output (yi(t), yr,i(t)) of the two
systems is bounded by a finite positive real δi, and this applies in every dimension
1 ≤ i ≤ p (4). Hence, we can conclude that there exists a k-dimensional output
abstraction M δ

k (yr|{xr, u}) 〈Ar, Br, Cr〉 of Mn.

There is a relationship between the output abstraction and δ-approximate (bi)simulation
relations [Girard and Pappas (2007a)] given as follows.

Consider two dynamic systems:

Σ : ẋ(t) = f1(x(t), u(t)),
y(t) = g1(x(t)),

Σ̃ : ˙̃x(t) = f2(x̃(t), u(t)),
ỹ(t) = g2(x̃(t)).

The central notion of approximate bisimulation is to characterize and quantify
the distance between the outputs y(t) and ỹ(t) generated by system Σ and Σ̃ with
the same input u(t).

Definition 7 [Girard and Pappas (2007a)] A relation Rδ ⊆ Rnx × Rñx is called a
δ-approximate bisimulation relation between systems Σ and Σ̃, of precision δ, if,
∀t ∈ R≥0 and for all (x(t), x̃(t)) ∈ Rδ:
1. ‖y(t)− ỹ(t)‖ ≤ δ,
2. ∀u(t) ∈ U , ∀ solutions x(t) of Σ, ∃ a corresponding solution x̃(t) of Σ̃ such that

(x(t), x̃(t)) ∈ Rδ,
3. ∀u(t) ∈ U , ∀ solutions x̃(t) of Σ̃, ∃ a corresponding x(t) ofΣ such that (x(t), x̃(t)) ∈

Rδ.
If these conditions are met, we say systems Σ and Σ̃ are approximately bisimilar
with precision δ, denoted by Σ ∼δ Σ̃.

Parameter δ measures the similarity of two systems Σ and Σ̃. In particular, R0
with δ = 0 recovers the exact bisimulation relation. However, in most situations, the
value of δ has to be greater than zero for two bisimilar systems, then the problem
of calculating a tight estimate of δ is of the most importance in using approximate
bisimulation relations for verification.

In this context, we relate the precision δ with the overall error bound δ =
[δ1, δ2, . . . , δp]T developed earlier (4), to obtain the following proposition to estab-
lish an approximate bisimulation relation between the full-order system Mn and its
output abstraction M δ

k .

Proposition 1 For the full-order LTI system Mn(y|{x, u})〈A,B,C〉 and the k-
reduced order system Mk(yr|{xr, u})〈Ar, Br, Cr〉 by (2), there exists an approximate
bisimulation relation Rρ such that Mn ∼ρ Mk, where ρ = ‖δ‖.
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Proof For output y(t) and yr(t) generated by Mn and Mk, we have:

‖y(t)− yr(t)‖ =
√∑p

1
(yi(t)− yir(t))2.

Then, with the error bound δi, i = 1, 2 . . . , p, computed by (4), we have:

‖y(t)− yr(t)‖ ≤
√∑p

1
δ2
i = ‖δ‖ = ρ.

According to Definition 7, and by either Theorem 1 or Theorem 2 for the e1
error bound and by Theorem 3 for the e2 error bound, the approximate bisimulation
relation Rρ with precision ρ is established.

Remark 3 It should be emphasized that there is a difference between the output ab-
straction and the δ-approximate bisimulation relation since we compute the distance
element to element between the outputs of two systems, i.e., ‖yi − yr,i‖ ≤ δi. Our
more precise result can produce a tighter transformed safe and unsafe specifications,
which will be clarified in the next section.

3.4 Computational time complexity to compute the error bound

Assume that the average time for one simulation is t̄, then the time for the simulation-
based approach [Han and Krogh (2004)] to compute the error bound will be t̄×N ,
where N is the total number of simulations. To analyze the time complexity of the
simulation-based approach, we need to determine N . For an n-dimension system
with m inputs and p outputs, the number of vertices in polyhedral initial set is 2n.
Therefore, the number of simulations that need to be done to determine the bound
of e1 is 2n. Similarly for e2, as discussed in the previous section, the number of
simulations for determining the bound of e2 is m. Overall, the number of simulations
N need to be done in the worst case is N = 2n +m, and the overall simulation time
needed is O(t̄× (2n +m)).

In [Girard and Pappas (2007a)], to compute the error bound, this method solves
two LMI and quadratic optimization problems on the sets of initial state and inputs.
To estimate the time complexity of this method, we need to calculate the num-
ber of decision variables first. For the n-dimensions system, the number of decision
variables is (n2 + n)/2. The number of LMI constraints related to this method is
2. Consequently, the time complexity for solving two LMI constraints using inte-
rior point algorithms can be estimated by O([(n2 + n)/2]2.75 × 21.5) [Vandenberghe
and Boyd (1994); Nesterov et al. (1994)]. The time complexity for solving the opti-
mization problem in [Girard and Pappas (2007a)] using interior point algorithms is
O([(n2 + n)/2]3) [Vandenberghe and Boyd (1994); Nesterov et al. (1994)]. Totally,
the time complexity in computing the error bound of the method proposed in [Girard
and Pappas (2007a)] is O([(n2 + n)/2]3) + O([(n2 + n)/2]2.75 × 21.5), which can be
bounded as O(n6).

In our approach, it is easy to see that Theorem 1 computation mainly relates to
solving the optimization problem to find supx0∈X0 ‖x̄0‖. This optimization problem
can be done in two steps. The first step is to find the upper bound and lower bound of
x̃0 by solving the linear optimization problem defined by min(max)Hx0, x0 ∈ X0.
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[Girard and Pappas (2007a)] O(n6)
[Han and Krogh (2004)] O(2n +m)

Theorem 1 O(n3.5)
Theorem 2 O((n+ k)5.5)

Table 1: Time complexity of different methods to compute the error bound δ.

Then, the supremum of the Euclidean-norm of x̄0 can be easily obtained. If we
use interior point algorithms for this problem, the time complexity of our approach
using Theorem 1 is O((n+ 1)3.5) [Nesterov et al. (1994)]. If we use the optimization
method proposed in Theorem 2, we first need to solve the eigenvalue problem (EVP)
subject to two matrix inequalities that has time complexity O([((n + k)2 + n +
k)/2]2.75 × 21.5) if using interior point algorithms [Vandenberghe and Boyd (1994)].
Then, we need to solve the quadratic optimization problem that has time complexity
O((n+k)3) if we use the interior point algorithm [Ye and Tse (1989)]. Note that the
computation cost of Theorem 3 in our approach is small compared to Theorem 1
and Theorem 2.

Table 1 shows the simplified time complexity analysis of different approaches to
compute the error bound δ. As can be seen from the above discussion and Table 1,
in terms of time complexity, our approach using Theorem 1 and Theorem 3 is more
efficient when dealing with high-dimensional systems while using Theorem 2 does
not improve the time complexity. The computation time of different methods are
measured and discussed in detail in Section 6.

4 Safety Verification with Output Abstractions

In this section, we focus on answering two critical questions: (a) how can an output
abstraction be used to verify safety specifications of the original, full-order system?
(b) How can an appropriate output abstraction be derived automatically? To answer
the first question, safety specifications must be transformed from those over the states
of the full-order system to its output abstraction.

For the general approximate bisimulation relation Σ ∼δ Σ̃, we usually use δ-
neighborhood to transform the safe and unsafe set.

Proposition 2 If Σ ∼δ Σ̃, then the following statements are true:
1. System Σ is safe if R[t0,tf ](Σ̃) ∩N (U(Σ), δ) = ∅
2. System Σ is unsafe if R[t0,tf ](Σ̃) ∩N (S(Σ), δ) 6= ∅
where N (·, δ) denotes the δ-neighborhood of a set.

Remark 4 δ-neighborhood is a general approach to transform safety specification.
However, in some cases when the safe and unsafe specifications are describes by
polytopes or ellipsoids which are usually used in practical systems, for example
in SpaceEx [Frehse et al. (2011)] and Ellipsoid Toolbox [Kurzhanskiy and Varaiya
(2006)], a more precise transformed safety specification can be derived by our ele-
ment to element approach in Section 3 since δi ≤ ‖δ‖, thus it performs better than
the δ-neighborhood approach.

In the following, we present detailed algorithms to transform the safety specifi-
cations described by convex polytopes and ellipsoids.
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4.1 Transforming Safety Specifications

4.1.1 S(Mn) as Convex Polytopes

Assume that the safety specification of the full-order system is of the form:

S(Mn) = {y ∈ Rp| Γy + Ψ ≤ 0}, (5)

where Γ = [αij ] ∈ Rq×p and Ψ = [βi] ∈ Rq.

Lemma 2 Given S(Mn) described by (5), then S(M δ
k ) and U(M δ

k ) defined as follows
guarantee the safety relation (1).

S(Mδ
k ) = {yr ∈ Rp| Γyr + Ψ ≤ 0},

U(Mδ
k ) = {yr ∈ Rp| Γyr + Ψ > 0},

Ψ = Ψ +∆, Ψ = Ψ −∆,

∆ = [∆i] ∈ Rq, ∆i =
p∑
j=1

|αij |δj .

(6)

The proof is given in Appendix 8.1.

4.1.2 S(Mn) as Ellipsoids

Assume that the safety specification of the full-order system is described by an
ellipsoid with radius R as:

S(Mn) = {y ∈ Rp| (y − a)TQ(y − a) ≤ R2}, (7)

where a is the center of the ellipsoid and Q ∈ Rp×p is a symmetric positive definite
matrix.

Since Q is a symmetric matrix, there exists an orthogonal matrix E = [l1, l2, .., lp]
= [γij ] ∈ Rp×p such that ETQE = Λ = diag(λ1, λ2, ..., λp), where λi (> 0) is
eigenvalue of Q and li is the eigenvector of Q corresponding to λi. The transformed
safety and unsafe specifications of the output abstraction can be obtained with the
following lemma.

Lemma 3 Given S(Mn) described by (7), then S(M δ
k ) and U(M δ

k ) defined as follows
guarantee the safety relation (1):

S(M δ
k ) = {yr ∈ Rp| (yr − a)TQ(yr − a) ≤ (R−∆R)2},

U(M δ
k ) = {yr ∈ Rp| (yr − a)TQ(yr − a) > (R+∆R)2},

∆R =

√√√√ p∑
i=1

[λi(
p∑
j=1

|γij |δj)2].

The proof of this result is given in Appendix 8.1.
We can see that the transformed safety specification of the output abstraction

is also an ellipsoid (with smaller radius R − ∆R) located inside the original ellipse
defining the safety specification of the full-order system. Meanwhile the correspond-
ing transformed unsafe specification is defined by the region outside the larger ellipse
with the radius R+∆R.
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Fig. 1: Semi-algorithm for automatic safety verification using output abstraction.

4.1.3 Further discussion

Lemmas 2 and 3 can be applied directly for the system with bounded safety spec-
ification (i.e., the safety specification is bounded and thus, the unsafe specification
is unbounded). Conversely, it is easy to see that our method can also be applied
for the system with unbounded safety specification (i.e., the unsafe specification is
bounded). Assume that the unsafe specification of the full-order system is bounded
by a convex polytope as follows:

U(Mn) = {y ∈ Rp| Γy + Ψ ≤ 0}, (8)

where Γ and Ψ are defined as in (5). Then, the transformed unsafe specification for
the output abstraction is defined by:

U(M δ
k ) = {yr ∈ Rp| Γyr + Ψ ≤ 0}, (9)

where Ψ , ∆ are defined as in Lemma 2.
Similarly, suppose the unsafe specification of the full-order system is bounded by

an ellipsoid with radius R:

U(Mn) = {y ∈ Rp| (y − a)TQ(y − a) ≤ R2}, (10)

where a and Q are defined as in (7). Then, the corresponding transformed unsafe
specification for the output abstraction is bounded by the following:

U(M δ
k ) = {yr ∈ Rp| (yr − a)TQ(yr − a) ≤ (R+∆R)2}, (11)

where ∆R is the same as in Lemma 3.
The proof for the above transformation is the same as in Lemmas 2 and 3.

Geometrically, the transformed unsafe specification of the output abstraction is a
larger region containing the unsafe region of the full-order system.
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4.2 Safety Verification with Output Abstraction

Lemma 4 Given a asymptotic stable LTI system Mn, whenever its output abstrac-
tion M δ

k is safe or unsafe, it is sound to claim that the system Mn is safe or unsafe
respectively.

Proof According to Lemma 1, for a stable LTI system, there exists an output ab-
straction M δ

k . From the definition of the output abstraction, we can see that, for
any output trajectory of Mn, there exists a corresponding output trajectory of M δ

k

such that the distance between two trajectories is always bounded by a sound ‖δ‖.
Moreover from Lemmas 2 and 3, because the transformed specifications (S(M δ

k ) and
U(M δ

k )) satisfy the safety relation (1), thus when each output trajectory ofM δ
k satis-

fies the transformed safety specification S(M δ
k ), its corresponding output trajectory

ofMn also satisfies the original safety specification S(Mn). That means, if all output
trajectories ofMδ

k satisfy the transformed safety specification S(M δ
k ), then all output

trajectories of Mn also satisfy the original safety specification S(Mn). Consequently,
when the output abstraction is safe, it is sound to claim that the full-order system
is safe. A similar proof can be given for the unsafe case. The proof is completed.

So far, the process of obtaining an output abstraction and its safety specifica-
tions from a given high-dimensional linear system and safety requirements can be
done automatically. A semi-algorithm for automatic safety verification of a high-
dimensional system using its output abstraction is depicted in Figure 1. The method
finds a k-dimension output abstraction (k = k0 initially, where k0 is given by the
user) and the corresponding safety specification, then checks the safety of the output
abstraction. The method may not terminate as checking the safety of the output ab-
straction is undecidable since it involves computing the reachable states for a linear
system, so it is a semi-algorithm. However, in practice, tools such as SpaceEx may
terminate for time-bounded overapproximate reachability computations for systems
of small enough dimensionality.1 If it is safe (or unsafe) then the method stops with
the conclusion that the full-order system is safe (or unsafe) and returns the current
k-order abstraction. If the safety of the output abstraction cannot be verified (i.e.,
it is indeterminate), then the algorithm will repeat the same process for another
output abstraction whom the order is increased by 1 from the order of the current
abstraction.

We have discussed how to use an output abstraction for verification and proposed
an semi-algorithm to obtain automatically an appropriate output abstraction. In
the next section, the method is extended to a class of periodically switched linear
systems.

5 Output Abstraction and Verification for Periodically Switched Systems

In this section, we extend our previous results to verify the safety of periodically
switched systems (PSSs).

1 Note that we cannot use SpaceEx to conclude a system is unsafe because it computes
over-approximations of the actual set of reachable states. We could conclude unsafety if under-
approximations were available, but not many tools compute under-approximations.
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Fig. 2

5.1 Output Abstraction for Periodically Switched Systems

To define the class of PSSs, we need to define the notion of periodical switching
signal ρ(t).

Let P = {1, 2, ..., l − 1, l}, where l ∈ N and T = {t0, t1, t2, ..., tl−1, tl}. The
periodical piecewise constant function ρ(t) describing the switching signal is assumed
to be right-continuous everywhere and is defined by:{

ρ (t) = i, ti−1 ≤ t < ti, i ∈ P
ρ (k × tl + t) = ρ (t) , t0 ≤ t < tl, k = 0, 1, 2, ...

Figure 2a illustrates a periodic switching function with the assumption that t0 =
0. For simplicity, we omit the time argument of switching function in the rest of the
paper. The class of PSS is given by:

ẋ(t) = Aρx(t) +Bρu(t), t /∈ T ,
x(t+) = rρ(x(t)), t ∈ T , x(t+) ∈ Xo

ρ

y(t) = Cρx(t),
(12)

where x(t) ∈ Rn is the system state, y(t) ∈ Rp is the system output, u(t) ∈ Rm is
the control input, and (Aρ, Bρ, Cρ) are system matrices in the “mode” ρ; rρ(·), and
Xo
ρ respectively are the bounded resetting function and the initial set of state in the

“mode” ρ. In particular, the first equation of (12) describes the continuous dynamics
of the PSS and the second equation represents the resetting law. For brevity, we
denote Mn as the full-order PSS defined by (12).

The above class of switched systems with resetting functions can be found in some
supervisory control structures with the employment of impulsive control techniques.
Once the system state is observed to reach some unsafe large values far away from
initial set, some impulsive control schemes can be activated to abruptly drag the
state back to the initial set to ensure the safety of the system. Note that in this
paper, the resetting functions are activated periodically along with time (i.e., they
do not depend on state variables).

Since the initial state for each mode is specified in each switching time, using
the same approach as for linear continuous system, we can find the reduced-order
representation called the local output abstraction for each mode ofMn that produces
the output signal capturing the full-order system output signal within an computable
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error bound. In other words, we can derive the output abstraction M δ
k for the full-

order PSS Mn as:

ẋr(t) = Ăρxr(t) + B̆ρu(t), t /∈ T ,
xr(t+) = STρx(t+), t ∈ T

yr(t) = C̆ρxr(t),
(13)

where xr(t) ∈ Rk, yr(t) ∈ Rp and the system matrices (Ăρ, B̆ρ, C̆ρ) of the abstraction
in mode ρ can be obtained using the balanced truncation reduction method Section 3
defined by the balancing transformation matrix Tρ and the cutting matrix S =(
Ik×k 0k×(n−k)

)
.

The output signal of the abstraction M δ
k captures the output of the full-order

system Mn at all the times t within a piecewise linear constant error bound δρ =
[δρ1 , δ

ρ
2 , ..., δ

ρ
p ]T which can be computed in the same manner as in the case of linear

continuous systems in Section 3.
This summarizes the procedure for deriving the output abstraction for the full-

order PSS. Next, we consider how to use the output abstraction to verify safety of
the full-order PSS.

5.2 Verification for Periodically Switched Systems

Similar to the case of linear continuous system, the key step for the verification pro-
cess is that from the computed error bound δρ and the given safety specification of the
full-order PSS system, we determine the safety specifications for the corresponding
output abstraction that guarantees the safety relation (1).

Let us consider the first case that the safety specification of the full-order PSS (12)
is described by (5) (i.e. as a polytope). The transformed safety specifications for the
corresponding output abstraction (13) that satisfies the safety relation (1) is defined
by:

S(M δ
k ) =

⋃
ρ

Sρ(Mδ
k ), U(M δ

k ) =
⋃
ρ

Uρ(Mδ
k ),

Sρ(M δ
k ) = {yr ∈ Rp| Γyr + Ψ

ρ ≤ 0},
Uρ(M δ

k ) = {yr ∈ Rp| Γyr + Ψρ > 0},

Ψ
ρ = Ψ +∆ρ, Ψ

ρ = Ψ −∆ρ,

∆ρ = [∆ρ
i ] ∈ Rq, ∆ρ

i =
p∑
j=1

|αij |δρj .

Similarly, when the safety specification of the full-order PSS has the form of
an ellipsoid as defined in (7), we can derive the corresponding transformed safety
specification for the output abstraction as follows.
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(a) Safety specification S270 = of the full or-
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middle green polytopes and the transformed
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gion Uδ10 is outside the largest red polytopes.
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Fig. 3

S(Mδ
k ) =

⋃
ρ

Sρ(M δ
k ), U(M δ

k ) =
⋃
ρ

Uρ(M δ
k ),

Sρ(M δ
k ) = {yr ∈ Rp| (yr − a)TQ(yr − a) ≤ (R−∆ρ

R)2},
Uρ(Mδ

k ) = {yr ∈ Rp| (yr − a)TQ(yr − a) > (R+∆ρ
R)2},

∆ρ
R =

√√√√ p∑
i=1

[λi(
p∑
j=1

|γij |δρj )2].

We have obtained the transformed safety specification for the output abstraction
of a PSS. Since the error bound δρ varies along with time (i.e. it depends on what
mode is being activated), the transformed safety specification for the output abstrac-
tion also varies along with time. In addition, it is periodic because of the periodicity
of the switching function ρ(t). Figure 2b presents an example of the transformed
safety specification of a PSS with two outputs. From the transformed safety spec-
ification, we can verify straightforwardly the safeness of the output abstraction to
conclude about safety of its full-order PSS.

We have considered how to obtain an output abstraction and use it to verify
safety of PSS. In the next section, several case of studies are presented to evaluate
the benefits of our method.

6 Case Studies and Evaluation

To evaluate the order-reduction abstraction method presented in this paper, we im-
plemented a software prototype that automatically creates output abstractions from
full-order systems and applied it to a set of benchmarks. The method is integrated
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in HyST by calling Matlab related functions.2 In this section, we first evaluate the
advantages and disadvantages of our method in computing the error bound and its
performance. Our results are compared with the results produced by the approximate
bisimulation relations method [Girard and Pappas (2007a)] and the simulation-based
approach [Han and Krogh (2004)] via several benchmarks presented in Table 2. Then,
we consider in detail how to apply our method to verify the safety of two specific
case studies.

Error bound and computation time evaluation. The experiments are using Matlab
2014a and SpaceEx on a personal computer with the following configuration: Intel
(R) Core(TM) i7-2677M CPU at 1.80GHz, 4GB RAM, and 64-bit Window 7. We
set the upper limit for Matlab simulation and SpaceEx running time as two hours.
It is said to be out of time (OOT) if we can not get the result after two hours.

Table 4 presents the error bounds and computation times of different methods on
some typical benchmarks. The approximate bisimulation method proposed in [Gi-
rard and Pappas (2007a)] is integrated in the Matlab toolbox called MATISSE. The
simulation-based method proposed in [Han and Krogh (2004)] is done automatically
in this paper. The results of our method are presented separately as follows. In the

2 The prototype implementation and SpaceEx model files for the examples evaluated, both
before and after order reduction, are available at: http://verivital.com/hyst/pass-order-
reduction/.

No. Benchmark Type n m p
1 Motor control system (MCS) LTI 8 2 2
2 Helicopter [Frehse et al. (2011)] LTI 28 6 2
3 Building model (BM) [Chahlaoui and Van Dooren (2002)] LTI 48 1 1
4 International space station (ISS) [Chahlaoui and Van Dooren (2002)] LTI 270 3 3
5 Partial differential equation (Pde) [Chahlaoui and Van Dooren (2002)] LTI 84 1 1
6 FOM [Chahlaoui and Van Dooren (2002)] LTI 1006 1 1
7 Synchronous position control system with 2 motors (SMS2) PSS 8 2 2

Table 2: Benchmarks for the order-reduction abstraction method in which n is di-
mension of the system; m and p are the number of inputs and outputs respectively.

http://verivital.com/hyst/pass-order-reduction/
http://verivital.com/hyst/pass-order-reduction/
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first part named “Mixed bound”, we compute the bound of e1 using Theorem 2 and
the bound of e2 using simulation. In the second part named “Theoretical bound”,
the bounds of e1 and e2 are computed using Theorem 1 and Theorem 3 respectively.
We remind that, for p-output MIMO system, the simulation-based method and our
proposed method compute separately the error bound for each pair of output (i.e.∥∥yi − yir∥∥ , 1 ≤ i ≤ p) while the approximate bisimulation method computes the
total error bound (i.e. ‖y − yr‖).

Let us consider the bound of e1 related to the initial set of states X0 that is
computed using the two different techniques proposed in this paper. For the heli-
copter and partial differential equation benchmarks, the initial set of states X0 is far
from the zero point. The bounds of e1 computed using Theorem 1 is large and too
conservative which may not be useful. For the motor control system and building
model benchmarks, the initial set of states X0 is close to the zero point. The bounds
of e1 computed by Theorem 1 are fairly good and acceptable. We can see that the
bounds of e1 computed using Theorem 2 is much smaller than the ones computed
by Theorem 1 for any situation of X0.

Now, we analyze the bound of e2 computed by Theorem 3 where the effect of
Hankel singular values on this bound as mentioned in Remark 1 can be illustrated.
For the PDE benchmark, it can be seen that the theoretical bounds of e2 for all cases
of the output abstraction’s dimension k are very small due to the fact that the Hankel
singular values σk (which are not presented here) of the corresponding balanced
system are very small (almost equal to zero) as k ≥ 5. We can see more clearly the
effect of these Hankel singular values by looking at the helicopter benchmark. The
theoretical bound of e2 becomes larger when the lower dimension output abstraction
is obtained. It is small as k equal to 20 because

∑28
21 σj is small. The theoretical

bound of e2 becomes conservative as k = 10 since
∑28

11 σj is large. It can be shown
that the bound of e2 computed using simulation method is much less conservative
than the theoretical bound. Although Theorem 3 may give conservative result for
some systems, it is still useful for some other systems as analyzed above. The benefit

Benchmark Initial set of states Input constraint Safety specification
X0 = {x0 ∈ Rn| lb(i) ≤ x0(i) ≤ ub(i), 1 ≤ i ≤ n} u = [u1, · · · , um]T y = [y1, · · · , yp]T

Motor control
system

lb(i) = ub(i) = 0, i = 2, 3, 4, 6, 7, 8, u1 ∈ [0.16, 0.3], unsafe region:
lb(2) = 0.002, ub(2) = 0.0025, u2 ∈ [0.2, 0.4]. 0.35 ≤ y1 ≤ 0.4,
lb(3) = 0.001, ub(3) = 0.0015. 0.45 ≤ y2 ≤ 0.6.

Helicopter
lb(i) = ub(i) = 0.1, i = 1, 4, 5, 6, 7, ui ∈ [−1, 1], unsafe region:
lb(2) = lb(3) = 0.098, ub(2) = 0.11, ub(3) = 0.102, 1 ≤ i ≤ 6. −1 ≤ y1 ≤ 1,
lb(i) = ub(i) = 0, 8 ≤ i ≤ 28. 10 ≤ y2

Building model
lb(i) = 0.0002, ub(i) = 0.00025, 1 ≤ i ≤ 10,

u1 ∈ [0.8, 1].
unsafe region:

lb(25) = −0.0001, ub(25) = 0.0001, 0.008 ≤ y1
lb(i) = ub(i) = 0, 11 ≤ i ≤ 48, i 6= 25.

Partial differ-
ential equation

lb(i) = 0, ub(i) = 0, 1 ≤ i ≤ 64
u1 ∈ [0.5, 1].

safe region:
lb(i) = 0.001, ub(i) = 0.0015, 64 ≤ i ≤ 80, y1 ≤ 12
lb(i) = −0.002, ub(i) = −0.0015, 81 ≤ i ≤ 84.

International
space station lb(i) = −0.0001, ub(i) = 0.0001, 1 ≤ i ≤ 270.

Safe region:
−461y1 +887y2 +0.67 ≤ 0,

u1 ∈ [0, 0.1], −440y1−898y2−0.68 ≤ 0,
u2 ∈ [0.8, 1], −76.7y1 +997y2−0.54 ≤ 0,
u3 ∈ [0.9, 1]. 898y1 − 440y2 − 0.89 ≤ 0,

945y1 + 326y2 − 0.95 ≤ 0,
−0.0005 ≤ y3 ≤ 0.0005.

FOM
lb(i) = −0.0001, ub(i) = 0.0001, 1 ≤ i ≤ 400

u1 ∈ [−1, 1].
safe region:

lb(i) = 0.0002, ub(i) = 0.00025, 401 ≤ i ≤ 800, y1 ≤ 45
lb(i) = 0, ub(i) = 0, 801 ≤ i ≤ 1006.

Table 3: Initial states, input constraints and safety specification of LTI benchmarks.
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Benchmark k [Girard and Pappas (2007a)] [Han and Krogh (2004)] Mixed bound Theoretical bound
δ t(s) δ t(s) N e1 e2 δ t(s) e1 e2 δ t(s)

Motor con-
trol system

5 2.1 0.93
(

0.0021
0.047

)
0.17 22 + 2

(
0.00049
0.00062

) (
0.002
0.047

) (
0.0025
0.047

)
0.92

(
0.0098
0.0093

) (
0.53
0.53

) (
0.54
0.54

)
0.15

4 1.5 0.64
(

0.036
0.047

)
0.19 22 + 2

(
0.00086
0.00062

) (
0.035
0.047

) (
0.036
0.047

)
0.9

(
0.009
0.009

) (
0.91
0.91

) (
0.92
0.92

)
0.15

Helicopter
20 0.84 17

(
7.1e− 05
4.3e− 05

)
0.6 24 + 6

(
0.0072
0.018

) (
5.7e− 05
3.2e− 05

) (
0.0073
0.018

)
35

(
0.28
0.95

) (
0.0017
0.0017

) (
0.28
0.95

)
0.49

16 28 12
(

0.00075
0.0013

)
0.56 24 + 6

(
0.0072
0.018

) (
0.0007
0.00087

) (
0.0079
0.019

)
23

(
0.28
0.95

) (
0.029
0.029

) (
0.3
0.97

)
0.45

10 160 8.1
(

0.024
0.038

)
0.55 24 + 6

(
0.0085
0.021

) (
0.021
0.031

) (
0.03
0.053

)
13

(
0.27
0.93

) (
1
1

) (
1.3
1.9

)
0.45

Building
model

25 0.0096 180 0.0051 22 211 + 1 0.013 6.2e− 05 0.013 130 0.083 0.0072 0.09 1
15 0.069 120 0.005 18 211 + 1 0.012 0.00044 0.013 58 0.078 0.084 0.16 0.97
6 0.1 44 0.0058 14 211 + 1 0.011 0.00025 0.012 24 0.073 0.21 0.28 0.98

Partial
differential
equation

30 0.75 230 N/A OOT 220 + 1 0.033 5.6e− 14 0.033 1500 1 5e− 12 1 1.7
20 0.038 160 N/A OOT 220 + 1 0.033 3.5e− 14 0.033 890 1 5.4e− 12 1 1.7
10 0.086 55 N/A OOT 220 + 1 0.033 9.8e− 13 0.033 520 0.92 2.7e− 11 0.92 1.7
6 0.1 42 N/A OOT 220 + 1 0.033 3.5e− 07 0.033 370 0.89 5.5e− 06 0.89 1.7

International
space sta-
tion

25 N/A OOT N/A OOT 2270 + 3 N/A

(
2.1e− 05

0.001
4.6e− 05

)
N/A OOT

(
0.00043
0.00026
0.00026

) (
0.47
0.47
0.47

) (
0.47
0.47
0.47

)
11

10 N/A OOT N/A OOT 2270 + 3 N/A

(
2.4e− 05
5.6e− 05
9e− 05

)
N/A OOT

(
0.00042
0.00022
0.00021

) (
1.7
1.7
1.7

) (
1.7
1.7
1.7

)
12

FOM
model

20 N/A OOT N/A OOT 2800 + 1 N/A 2.7e− 07 N/A OOT 1.3 1.1e− 05 1.3 48
15 N/A OOT N/A OOT 2800 + 1 N/A 0.00021 N/A OOT 1.3 0.0065 1.3 48
10 N/A OOT N/A OOT 2800 + 1 N/A 0.1 N/A OOT 1.3 2.2 3.5 48

Table 4: The error bounds and computation times obtained from different methods on
different benchmarks in which: k is the dimension of the output abstraction, δ is total
error bound, e1 is the zero input response error, e2 is the zero state response error,
t is the error computing time (in second) and N is the number of simulations. The
terms of “N/A” and “OOT” mean “not applicable” and “out of time”, respectively.

Benchmark Full Order System Output Abstraction
Time(s) Memory(Kb) k T1(s) T2(s) Total time(s) Memory(Kb)

Motor control
system 27 3048 5 26 0.92 26.9 3044

4 16.7 0.9 17.6 3044

Helicopter 287 3052
20 206 35 241 3052
16 128 23 151 3048
10 68 13 81 3048

Building model 893 3056
25 237.2 130 367.2 3048
15 82.3 58 140.3 3044
6 19.5 24 43.5 3040

Partial differ-
ential equation OOT N/A

30 725.6 1500 2225.6 3048
20 310 890 1200 3048
10 75.2 520 595.2 3040
6 31.9 370 401.9 3040

International
space station OOT N/A 25 254.3 11 265.3 3064

10 72.8 12 84.8 3052

FOM model OOT N/A
20 95.4 48 143.4 3048
15 56.2 48 104.2 3044
10 34.8 48 82.8 3040

Table 5: Computation cost for verification process of the full order original LTI
system and its output abstractions using SpaceEx [Frehse et al. (2011)] in which
T1 is the time for SpaceEx to compute the reach set of the output abstraction; T2
is the time for obtaining the output abstraction; “Total Time” column states for
the total time of verification process for the output abstraction, “Memory” column
presents the memory used for computing reach set which is measure in kilobyte; time
is measured in second. The terms of “N/A” and “OOT” mean “not applicable” and
“out of time”.

of the theoretical bound is we can calculate the bound very quickly without doing
simulation and thus avoid the numerical issues in simulation-based methods.

We have discussed the benefits and drawbacks of different techniques proposed
in this paper. Now, we make a short comparison with the approximate bisimulation
relation method [Girard and Pappas (2007a)] and simulation-based method [Han and
Krogh (2004)]. As can be seen from Table 4, the simulation-based approach gives
very tight bounds for the errors (for examples, the motor control system and heli-
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copter benchmarks). This approach is powerful when dealing with systems having
small number of vertices in the initial set. When the number of vertices increases,
the number of simulations also grows exponentially as can be seen from Table 4.
Therefore, it is difficult to apply the simulation-based approach in this situation
(e.g, PDE, ISS and FOM benchmarks). For the approximate bisimulation relation
method (integrated in Matisse toolbox), it can be observed that for PDE bench-
mark, this approach can give a good error bound. However, for MCS and Helicopter
benchmarks, this approach gives very conservative results (which may not be useful)
due to the appearance of ill-conditioned matrices in the process of solving LMI and
optimization problems. We can see that for all the benchmarks on which the approx-
imate bisimulation relation method can be applied, combination of using Theorem 2
and simulation bound of e2 (i.e. mixed bound) produces much less conservative er-
ror bounds. When the dimension of the system is large (e.g, as in the ISS and FOM
benchmarks), while the approximate bisimulation approach and Theorem 2 give no
results due to running out of time, our theoretical approach can still be applied.

Toward the computation time of different methods, we can see from the table
that our method using Theorem 1 and Theorem 3 has smallest computing time while
using Theorem 2 and approximate bisimulation relation method require much more
time to compute the error bound.

In summary, we can use different methods to compute the error bound between
the full-order system and the output abstraction. Each method has benefits and
drawbacks. The time complexity and the conservativeness of the result is a tradeoff
that we need to take into account when applying these method to a specific system.
As a suggestion from doing the experiment for this paper, for a system having dimen-
sion under 100, we can generally use Theorem 2, approximate bisimulation relation
method [Girard and Pappas (2007a)] or simulation-based approach [Han and Krogh
(2004)] to compute the error bound. For systems with more than 100 dimensions,
we can use Theorem 1 and Theorem 3 or combine Theorem 1 (for determining e1
bound) and simulation-based approach (for computing e2 bound).

We have evaluated the error bounds and computation times of different methods.
Next, we discuss about the benefit of using output abstraction for safety verifica-
tion. Table 5 shows the computation cost of the verification process for the full-order
LTI benchmarks and their different output abstractions. The bounded times for run-
ning all SpaceEx models are set as tf = 20s. In the table, T1 is the time for SpaceEx
to compute the reach set of the output abstraction; T2 is the time for obtaining the
output abstraction; “Total Time” column states for the total time of verification
process for the output abstraction, “Memory” column presents the memory used for
computing reach set which is measure in kilobyte; all times are measure in second.
For the first three systems (MCS, helicopter and BM), we combine Theorem 2 (for
determining e1 bound) and simulation-based approach (for computing e2 bound) to
derive the output abstraction. For the rest three benchmarks, we use Theorem 2(for
determining e1 bound) and simulation-based approach (for computing e2 bound) to
obtain the output abstraction. As shown in the table, although using output ab-
straction does not help much to reduce the memory used in verification, it can help
to reduce significantly the computation time. Moreover, output abstraction can be
applied to check the safety of high-dimensional systems (e.g. PDE, ISS and FOM)
that can not be verified directly using existing verification tools. Next, we consider
the whole process of using output abstraction to verify the safety of two specific
systems.
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International Space Station (ISS). The full-order model (denoted by M270) of the
component R1 of the international space station has 270 state variables, three inputs
and three outputs. We refer reader to [Antoulas et al. (2001)] for the state space
model of the system, and it is also included in our supplementary materials. The
initial condition, input constraints and safety specification of the ISS system are
presented in Table 3.

Verification for the full-order system with 270 state variables may be difficult for
existing verification tools. Output abstraction and safety specification transformation
can help to verify safety of such high-dimensional system with a small computation
cost. There are different output abstractions that can be used to verify whether the
full-order system satisfies its safety requirements. In this paper, we use a 10-order
output abstraction and the corresponding transformed safety specification to check
the safety of the full-order system. From the safety requirement of the full-order
system and the error bound shown in Table 4, we can see that the theoretical bound
of e2 is too conservative and cannot be used. To overcome this problem, we combine
the theoretical bound of e1 and the simulation bound of e2 to derive a better bound
between the full-order system and its 10-order output abstraction (denoted byM δ

10).
The error bound δ from this combination is δ = 10−3 × [0.44, 0.28, 0.3]T .

The safety specification of the full-order ISS system S270 is visualized by the
region inside the middle blue polytopes in Figure 3a. The transformed safety spec-
ifications (safe and unsafe specifications) of the corresponding 10-order output ab-
straction respectively are the region inside the smallest blue polytopes and the region
outside the red polytopes.

Figures 3b, 4a and 4b present the safety specification transformation and output
reach set in the period of time [0, 20s] computed by SpaceEx [Frehse et al. (2011)]
of the 10-order output abstraction on 2-dimension axes.

In the figures, the regions inside the middle blue polygons are the 2-dimensions
projected safety regions of the full-order system. The corresponding projected trans-
formed safety and unsafe specifications Sδ10, Uδ10 of the output abstraction are de-
scribed by the regions inside the smallest blue polygons and the regions outside the
red polygons respectively. The reach set Rδij , i 6= j, 1 ≤ i, j ≤ 3 for each pair output
(yri , yrj ) of the abstraction Mδ

10 are depicted by the solid blue regions. As shown in
the figures, for all (i, j), we have Rδij ∩¬Sδ10 = ∅, or in other words, M δ

10 � Sδ10, thus
it can be concluded that the full-order system M270 satisfies the safety requirement
S270. Therefore, the full-order system is safe.

Periodically switched synchronous motor position control system. We have applied
our method for safety verification of a high-dimensional LTI system above. Next, we
consider how to use the proposed method to verify safety of a periodically switched
synchronous motor system, which is used widely in many industrial fields such as
elevator control systems, robotics and conveyer control systems. In this system, two
motors are controlled synchronously and periodically in both directions (i.e. clockwise
and counterclockwise) to keep their position distance remaining in a desired range.

Two motors have the same parameters with the motors used in Carnegie Mellon’s
undergraduate controls lab. Each motor has its own controller which is designed to
guarantee that: (a) the overshoot of the output does not exceed 16%; (b) the settling
time is less than 0.04s; (c) No steady-state error, even in the presence of a step
disturbance input. The system denoted by M8 is modeled as a PSS with two modes
as depicted in Figure 5 in which two motors are controlled to rotate clockwise in
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mode 1 and inversely in mode 2. The operating time in mode 1 is t1 = 0.1 and the
operating time in mode 2 is t2 = 0.15.

The system’s matrices in the two modes are given by:

A0 =

 0 1 0 0
0 −1.0865 8487.2 0

−2592.1 −21.1190 −698.9135 −141390
1 0 0 0

 ,
B0 =

[
0 0 0 −1

]T
,

A1 = A2 =
[
A0 0
0 A0

]
, B1 = −B2 =

[
B0 0
0 B0

]
,

C1 = C2 =
[
1 0 0 0 0 0 0 0
1 0 0 0 −1 0 0 0

]
.

The reference control input applied to the system is u = [u1 u2], 0.16 ≤ u1 ≤
0.2, 0.16 ≤ u2 ≤ 0.22. The initial set of states of the system in the two modes are
defined by the hyperbox:

Xo
1 = {x ∈ R8| lbi1 ≤ x(i) ≤ ubi1, 1 ≤ i ≤ 8},

Xo
2 = {x ∈ R8| lbi2 ≤ x(i) ≤ ubi2, 1 ≤ i ≤ 8},

where (lb1, ub1) and (lb2, ub2) are initial conditions given in Table 6.
The first output of the system indicates the position of the first motor while the

second output represents the position distance between the two motors. In order
to make the system operate safely, the two motors are controlled synchronously so
that the first motor position y1 and the position error between the two motors y2
do not reach unsafe regions defined by U(M8) = {(y1, y2) ∈ R2| 178(y1 − 0.325)2 +
625(y2 − 0.16)2 ≤ 1, 178(y1 + 0.325)2 + 625(y2 + 0.16)2 ≤ 1}. The unsafe regions of
the full-order system are visualized by the regions inside the smallest red ellipses in
Figure 6.

To verify safety of the full-order (8-dimensional) system, we use a 5th-order
output abstraction M δ

5 and its transformed safety specification.

t ≤ 0.15
ẋ = A2x +B2u

ṫ = 1
y = C2x

t ≤ 0.1
ẋ = A1x +B1u

ṫ = 1
y = C1x

t ≥ 0.1
t := 0 ∧ x := r2(x(t)) ∈ X0

2

t ≥ 0.15
t := 0 ∧ x := r1(x(t)) ∈ X0

1

x0 ∈ X0
1

Fig. 5: Hybrid automaton model of the PSS synchronous motor control system.
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Vector Value
lb1 [-0.002 0 0 0 -0.001 0 0 0]T

ub1 [0.0025 0 0 0 0.002 0 0 0]T

lb2 [-0.001 0 0 0 -0.002 0 0 0]T

ub2 [0.001 0 0 0 0.003 0 0 0]T

lbr1 [-0.1373e-03 -0.5137e-03 -0.0586e-03 -0.2277e-03 -0.2235e-03]T

ubr1 [0.1323e-03 0.5332e-03 0.0930e-03 0.3610e-03 0.2320e-03]T

lbr2 [-0.1211e-03 -0.3684e-03 -0.0687e-03 -0.2666e-03 -0.1603e-03]T

ubr2 [0.0949e-03 0.4703e-03 0.0949e-03 0.3684e-03 0.2046e-03]T

Table 6: Initial condition vectors of synchronous motor control system and its 5th-
order output abstraction.

The matrices for the output abstraction denoted in mode 1 and mode 2 respec-
tively are:

Ar1 = Ar2 =


−18.925 80.823 0 0 −29.973
−80.823 −76.569 0 0 122.93

0 0 −18.925 −80.823 0
0 0 80.823 −76.569 0

−29.973 −122.93 0 0 −194.95

 ,

Br1 = −Br2 =
[

5.7806 7.3762 2.2080 −2.8175 4.8964
−3.5726 −4.5587 3.5726 −4.5587 −3.0262

]T
,

Cr1 = Cr2 =
[
3.5726 −4.5587 3.5726 4.5587 3.0262
5.7806 −7.3762 −2.2080 −2.8175 4.8964

]
.

The transformed initial set of states the output abstraction in the two modes are
defined by the hyperbox:

X̂o
1 = {xr ∈ R5| lbir1 ≤ xir ≤ ubir1, 1 ≤ i ≤ 5},

X̂o
2 = {xr ∈ R5| lbir2 ≤ xir ≤ ubir2, 1 ≤ i ≤ 5},

where (lbir1, ub
i
r1) and (lbir2, ub

i
r2) are given in Table 6.

We combine the optimization (for e1 bound) and simulation (for e2 bound)
methods to determine the error bounds between the full-order system and its 5-
order output abstraction. The error bounds in mode 1 and mode 2 respectively
are δ1 = [0.0234 0.0189]T and δ2 = [0.0228 0.0177]T . Using error bounds, the
transformed unsafe specification for the output abstraction denoted by U(M δ

5 ) is:
U(M δ

5 ) = {(y1, y2) ∈ R| 178(y1 − 0.325)2 + 625(y2 − 0.16)2 ≤ 1.572, 178(y1 +
0.325)2 + 625(y2 + 0.16)2 ≤ 1.572}. The unsafe regions for the output abstraction
are the regions inside the largest red ellipsoids in Figure 6.

To ensure safety of the system, the output abstraction must not violate its trans-
formed unsafe specification U(M δ

5 ). From Figure 6, we can see that the output reach
set of the output abstraction has an empty intersection with the unsafe regions, so
we can conclude that the full-order system is safe.

7 Conclusion and Future Work

We have proposed an approach to verify safety specifications in high-dimensional
linear systems and a class of periodically switched systems (PSSs) by verifying trans-
formed safety specifications of a lower-dimensional output abstraction using existing
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Fig. 6: Output reachable set in the period of time [0, 20s] of the 5th-order output
abstraction of the PSS synchronous motor position control system. The reach set
does not reach the unsafe region (the region inside the largest red ellipse), thus the
output abstraction is safe (with a bounded time interval), and thus the full-order
system is safe (with a bounded time interval).

hybrid system verification tools. By reducing the dimensionality, our method signifi-
cantly reduces the time and memory of reachability computations in the verification
process.

There are several interesting directions for future work. First, the method for
calculating the error bound corresponding to the zero input response (i.e. ||e1||) can
only be used for stable LTI systems. Thus, a more general approach needs to be
developed to deal with unstable linear systems. It is also important to find a general
strategy to address the verification problem for high-dimensional nonlinear systems.

Additionally, our approach can be extended to more general hybrid systems. The
main idea is that the states in each location that are related to guards/invariants
need to be declared as the outputs of that location. Then, the output abstraction
for each location can be obtained. A new hybrid system is then constructed based
on these output abstractions. The guards/invariants of the new hybrid system are
obtained by transforming the former guards/invariants of the original hybrid system
in the same manner of safety specifications transformation proposed in this paper.
This approach may benefit from other notions of “similarity” between behaviors
(executions) of systems such as discrepancy functions [Duggirala et al. (2013)], or
conformance degree [Abbas et al. (2014)].
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8 Appendix

8.1 Appendix: Proofs of Theorems

In this appendix, we present proofs of theorems presented in this paper.

8.1.1 Proof of Theorem 1

The basic idea of determining the theoretical bound of the first error e1 relies on the
concept of monotonic convergence defined as follows.

Definition 8 A homogeneous stable system ẋ = Ax is called monotonic convergent
if its states converge to zero and satisfy ‖ x(t) ‖≤‖ x(0) ‖, ∀t ≥ 0.

Lemma 5 A homogeneous stable system ẋ = Ax is a monotonic convergent system
if A+AT < 0.

Proof Choose the Lyapunov function V (x(t)) = x(t)Tx(t), we have:

V̇ (x(t)) = x(t)T (A+AT )x(t) < 0.

Therefore, V (x(t)) = ‖x(t)‖2 ≤ V (x(0)) = ‖x(0)‖2
, ∀t ≥ 0. This completes the

proof.

Proof of Theorem 1:
We will show that the uncontrolled augmented system (i.e. u = 0) is a monotonic

convergent system. To proof above statement, let consider the uncontrolled-balanced
system: ˙̃x = Ãx̃. Since the system is balanced, we have:

ÃΣ +ΣÃT +BBT = 0
ÃTΣ +ΣÃ+ CTC = 0.

Combining two above equations yields:

(Ã+ ÃT )Σ +Σ(Ã+ ÃT ) = −BBT − CTC.
It is easy to see that the real parts of all eigenvalues of Ã+ÃT are necessarily non-

positive. Since Ã+ÃT is symmetric, it is non-positive. Note that Ã is asymptotically
stable. Thus, using Lemma 5, we can conclude that the uncontrolled-balanced system
is a monotonic convergent system.

Similarly, we can see that the uncontrolled-reduced system ẋr = Arxr is also a
monotonic convergent system. Since Ã+ÃT < 0 and Ar+ATr < 0, we have Ā+ĀT <
0, that means the uncontrolled augmented system is a monotonic convergent system.

Using the monotonic convergent property, the bound of the error e1 satisfies:

∥∥ei1(t)
∥∥2 = ‖ȳ(i)‖2 = x̄T C̄Ti C̄ix̄

≤ λmax(C̄Ti C̄i) ‖x̄‖
2

≤ λmax(C̄Ti C̄i) ‖x̄0‖2

≤ λmax(C̄Ti C̄i) · sup
x0∈X0

‖x̄0‖2
, 1 ≤ i ≤ p.

This completes the proof.
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8.1.2 Proof of Theorem 2

Consider the uncontrolled augmented system (i.e. u = 0), let V (x̄(t)) = x̄(t)TPx̄(t),
we have V̇ (x̄(t)) = x̄(t)T (ATP + PA)x̄(t).

Assume P0 is the solution of the optimization problem in Theorem 2. Because
of (ATP0 + P0A) < 0, then V (x(t)) < V (x(0) = x̄T0 P0x̄0. Note that

∥∥ei1(t)
∥∥2 =

x̄T C̄Ti C̄ix̄, 1 ≤ i ≤ p. Since we also have C̄Ti C̄i ≤ P0, the bound of the error satisfies∥∥ei1(t)
∥∥ ≤√x̄T0 P0x̄0

This completes the proof.

8.1.3 Proof of Theorem 3

The theoretical bound of the second error e2 can be derived straightforwardly using
the concept of bounded input bounded output stability and the L1 error bound in
impulse response of balanced truncation model reduction [Obinata and Anderson
(2012)]. From (3), we have:

|e2(t)| = |ỹu − yru | = |
∫ t

0
(C̃eÃ(t−τ)B̃ − CreAr(t−τ)Br)u(τ)dτ |

≤
∫ t

0
|(C̃eÃ(t−τ)B̃ − CreAr(t−τ)Br)||u|dτ

≤ ‖u‖∞ ·
∫ ∞

0
|(C̃eÃ(t−τ)B̃ − CreAr(t−τ)Br)|dτ

≤ ‖u‖∞ · (2
n∑

j=k+1

(2j − 1)σj).

Thus,
∥∥ei2(t)

∥∥ ≤ ‖u‖∞ · (2∑n
j=k+1(2j − 1)σj) which completes the proof.

8.1.4 Proof of Lemma 2

From the definition of output abstraction, we have:

αijyrj − |αij |δj ≤ αijyj ≤ αijyrj + |αij |δj .

⇒ Γyr + Ψ2 ≤ Γy + Ψ ≤ Γyr + Ψ1.

Thus, S(Mδ
k ) and U(M δ

k ) defined by (6) satisfy the safety relation (1), which
completes the proof.

8.1.5 Proof of Lemma 3

Let ȳ = E(y − a), ȳr = E(yr − a). We have:

(y − a)TQ(y − a) = ȳTΛȳ =
p∑
i=1

λiȳ
2
i ,

(yr − a)TQ(yr − a) = ȳTr Λȳr =
p∑
i=1

λiȳ
2
ri .

(14)
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From the definition of output abstraction (Definition 3), it is easy to see that:

−δ̄i ≤ ȳi − ȳri = E(i, :)(y − yr) ≤ δ̄i,

δ̄i =
p∑
j=1

|γij |δj .
(15)

Using (15) and the Cauchy-Schwarz inequality yields:
p∑
i=1

λi(ȳi − ȳri)2 ≤ ∆2
R =

p∑
i=1

λiδ̄
2
i ,

p∑
i=1

2λiȳri(ȳi − ȳri) ≤ 2∆R

√√√√ p∑
i=1

λiȳ2
ri ,

p∑
i=1

2λiȳi(ȳri − ȳi) ≤ 2∆R

√√√√ p∑
i=1

λiȳ2
i .

(16)

Combining the first and second inequality of (16) leads to:

p∑
i=1

λiȳ
2
i ≤ (

√√√√ p∑
i=1

λiȳ2
ri +∆R)2. (17)

Similarly, combining the first and the third inequality of (16) yields:

p∑
i=1

λiȳ
2
ri ≤ (

√√√√ p∑
i=1

λiȳ2
i +∆R)2. (18)

From (14), (17), and (18), we have:√
(y − a)TQ(y − a) ≤

√
(yr − a)TQ(yr − a) +∆R,√

(y − a)TQ(y − a) ≥
√

(yr − a)TQ(yr − a)−∆R.
(19)

Using (19)), we can conclude that S(M δ
k ) and S(M δ

k ) defined in Lemma 3 satisfy
the safety relation (1), which completes the proof.
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