
Neural Network Verification Methods for
Closed-Loop ACAS Xu Properties ∗

Diego Manzanas Lopez†, and Taylor T. Johnson‡

Vanderbilt University, Nashville, TN, 37235

Stanley Bak§
Stony Brook University, Stony Brook, NY, 11794, USA

Hoang-Dung Tran¶

University of Nebraska-Lincoln, Lincoln, NE, 68588, USA

Kerianne L. Hobbs ‖

Air Force Research Laboratory, Wright-Patterson AFB, OH, 45431

Neural network approximations have become attractive to compress data for automation

and autonomy algorithms for use on storage-limited and processing-limited aerospace hard-

ware. However, unless these neural network approximations can be exhaustively verified to

be safe, they cannot be certified for use on aircraft. This manuscript evaluates the safety of a

neural network approximation of the unmanned Airborne Collision Avoidance System (ACAS

Xu). First, a set of ACAS Xu closed-loop benchmarks is introduced, based on a well-known

open-loop benchmark, that are challenging to analyze for current verification tools due to the

complexity and high-dimensional plant dynamics. Additionally, the system of switching and

classification-based nature of the ACAS Xu neural network system adds another challenge to

existing analysis methods. Experimental evaluation shows selected scenarios where the safety

of the ownship aircraft’s neural network action selection is assessed with respect to an intruder

aircraft over time in a closed loop control evaluation. Set-based analysis of the closed-loop

benchmarks is performed using the Star Set representation using both the NNV tool and the

nnenum tool, demonstrating that set-based analysis is becoming increasingly feasible for the

verification of this class of systems.

Nomenclature

d = distance between ownship and intruder, ft
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\ = angle to intruder w.r.t ownship heading, rad

k = heading of intruder w.r.t. ownship heading, rad

E = velocity, ft/s

g = time until loss of vertical separation, s

0?A4E = previous advisory

(! = strong left

,! = weak left

�$� = clear of conflict

,' = weak right

(' = strong right

G = position of the aircraft in cartesian x-direction, ft

H = position of the aircraft in the cartesian y-direction, ft

¤G = aircraft velocity in the x-direction, ft/s

¤H = aircraft velocity in the y-direction, ft/s

¤k = time rate of change in heading, rad/s

2 = user defined constant control input to ownship, ft/s

i = third angle planar relative in aircraft geometry, rad

) = time to collision, s

Subscripts

cg = center of gravity

8=C = intruder

>F= = ownship

I. Introduction
The use of machine learning in information technology domains has drastically improved automated capabilities

like natural language processing [1], image classification [2], and object detection [3]. In the last several years machine

learning has also tackled complex game playing with high dimensional state spaces, beating world experts in Go [4, 5]

and StarCraft II [6]. In addition to potentially optimizing performance of complex systems, neural networks are often

much smaller and faster to compute than other optimization algorithms, making them attractive for use on Cyber-Physical

Systems (CPS) like robots, cars, drones, and satellites. For example, neural networks have been used to compress the

2 gigabytes of lookup tables used by the Airborne Collision Avoidance System X to 5 megabytes of neural network

weights [7].
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However, use of machine learning in safety-critical system domains has historically been limited by verification

frameworks that treat neural networks like black boxes. Neural networks are not black boxes, however, they are compute

deterministic mathematical functions that are increasingly amenable to formal reasoning methods [8, 9]. While many of

these methods analyze the networks in isolation, several recent methods attempt to verify neural network control systems

(NNCS) [10–15]. NNCS can be generated through a variety of approaches, including reinforcement learning (RL),

model predictive control (MPC), and learning by demonstration. In the realm of NNCS safety verification, the problem

is often postulated as a reachability analysis question. By analyzing the reachable sets of the plant and the controller the

possible states of the plant are computed and evaluated for safety. Typically the controller is a feed-forward neural

network (FNN) and the plant may be described using ordinary differential equations (ODEs) or hybrid automata (HA),

in either discrete time or continuous time.

Although there has been significant progress in NNCS verification, developing scalable and non-conservative

methods remains a key issue. Recently, studies by Ivanov et al. [16], Tran et al. [17] and D.M. Lopez et al. [18],

have investigated the limits and capabilities of existing verification methods and tools [10, 19], and the trade-offs

between scalability and conservativeness. Julian et al. [20] and Akintunde et al. [21] have formally verified two

closed-loop variants of the simplified version of the vertical advisory control system in aircraft, the VerticalCAS [22],

using reachability analysis and MILP methods respectively. Building on these studies, this manuscript seeks to examine

a more complex NNCS model—the ACAS Xu NNCS benchmark formally described in section III—by using star-set

verification methods [23] in both the NNV tool [19] and the nnenum tool [24]. The largest novelty and challenge of the

ACAS Xu NN approximation is the switching nature of the NN control system; the system contains multiple neural

networks and the neural network executed at each step depends on the previous step’s output advisory. This NNCS

is evaluated using set-based analysis methods with the goal of verifying the correct and safe behavior of an aircraft

controlled with ACAS Xu in a set of initial states for each of the proposed closed-loop scenarios.

II. ACAS X
The Airborne Collision Avoidance System X (ACAS X) is under development to one day replace the Traffic Collision

Advisory System II (TCAS II) as a mid-air collision prevention system [25]. ACAS X is designed to be compatible with

the FAA’s Next-Generation Air Transportation System (NextGen), which uses new sensing and navigation technologies

coupled with new procedures to better optimize air traffic [25].

There are four variants of ACAS X [25], and this manuscript analyzes safety of a neural network approximation of

the ACAS Xu variant:

• ACAS Xa (active): Designed to provide protection from all tracked aircraft using onboard sensors on large manned

aircraft, ACAS Xa issues alerts and vertical advisories to the pilot [26].

• ACAS Xu (unmanned): Optimized for unmanned aircraft systems, ACAS Xu issues turn rate advisories to remote
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pilots [27].

• ACAS Xo (operation): special alerts during operations such as parallel runway approaches [25].

• ACAS Xp (passive): tracks aircraft for potential collisions, but doesn’t produce advisories [25].

Both ACAS Xa and ACAS Xu have a goal to avoid near midair collisions (NMAC) [28], defined as separation less

than 100 ft vertically and 500 ft horizontally [29], as depicted in Fig. 1.

Fig. 1 Near midair collision cylinder, defined as separation less than 100 ft vertically and 500 ft horizontally.

ACAS X functionality centers on the use of a set of look up tables generated offline with dynamic programming and

Markov decision processes (MDPs) [30]. The input to these lookup tables is a probabilistic state distribution of the

relative position and velocity of nearby aircraft approximated by sensor data. The output of the lookup tables is a cost

for each of three possible actions: no alert, traffic advisory, or a resolution advisory for pilots to maintain or increase

safe separation from other aircraft [25].

A. ACAS Xu

ACAS Xu, the unmanned aircraft version, assigns values to a set of output actions based on a set of input variables

as described in Table 1. The first five variables describe 2D considerations, the sixth variable brings the scenario into

3D, and the seventh variable promotes advisory selection consistency. In the initial lookup tables, the state variables are

discretized in a seven dimensional grid with 120 million points [31] that assign a value to each of 5 different output

action options, resulting in 600 million floating point numbers. When the state of the system falls between discrete

points, the nearest neighbor point is used [31]. To deal with sensor uncertainty in the system state, ACAS Xu uses an

unscented Kalman filter.

Table 1 Input state variables used in ACAS Xu.

Variable Units Description Tables NN
d ft distance between ownship and intruder Y Y
\ rad angle to intruder w.r.t ownship heading Y Y
k rad heading of intruder w.r.t. ownship heading Y Y
E>F= ft/s velocity of ownship Y Y
E8=C ft/s velocity of intruder Y Y
g s time until loss of vertical separation Y N
0?A4E deg/s previous advisory Y N
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Fig. 2 Diagram of the ACAS Xu physical variables.

Table 2 ACAS Xu Actions (Horizontal Collision Avoidance).

Action Description
(! strong left at 3.0 deg/s
,! weak left at 1.5 deg/s
�$� clear of conflict (do nothing)
,' weak right turn at 1.5 deg/s
(' strong right turn at 3.0 deg/s

B. Neural Network Compression of ACAS Xu

A major challenge to implementation of ACAS Xu is that the initial look up tables require hundreds of gigabytes

of floating point storage [7]. Using a technique called downsampling, values may be removed from the table in areas

where variation between the values is very small and has been shown to reduce ACAS Xu table size to approximately 2

gigabytes [7]. For ACAS Xa, which limits advisories to vertical maneuvers and has smaller lookup tables to begin with,

downsampling was sufficient [32]. However, ACAS Xu’s 2 gigabyte size may still be too large for the storage constraints

of certified avionics hardware [33].

Developed in [7] and evaluated in [27], 45 separate neural networks were used to compress the lookup table.

Each network is denoted #G,H , where G corresponds to the index (1 to 5) of a specific value of previous advisory

0?A4E ∈ {�$�,,!,,', (!, ('} and H corresponds to the index (1 to 9) of a specific value of time to loss of vertical

separation g ∈ {0, 1, 5, 10, 20, 40, 60, 80, 100} seconds. For example, #2,3 corresponds to a neural network in which

0?A4E = ,! and g = 5. Then each of these networks receives inputs for the remaining five state variables, and outputs a

value associated with each of the five output variables ({�$�,,!,,', (!, ('}). Several architectures and optimizers

were considered and analyzed for the training of all the 45 neural networks. AdaMax, a variant of Adam, was chosen as

it proved to learn the fastest without getting stuck in local optima. As for the layer architecture, six hidden layers of 50

neurons each proved to yield the best results while maintaining an efficient computation time [7]. Hence, all the neural

networks have five inputs, five outputs and six hidden layers of 50 neurons each, as depicted in Fig. 3.
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Fig. 3 Depiction of the ACAS Xu neural network.

C. Open-Loop vs. Closed-Loop Verification

Previous research has verified the neural networks using a set of open-loop test points [22, 27, 31, 33]. In other

words, for a single instant in time, the neural network is verified to output appropriate scores for a particular set of

inputs. The open-loop properties described in [27] became a popular benchmark for open loop verification, and are

summarized here in the Appendix of this paper. However, a much more important property that needs to be verified

for these neural networks is that, when used in closed-loop control, the neural network approximation of the lookup

tables will not result in control actions that violate the NMAC safety constraint depicted earlier in Fig. 1. One of the

contributions of this manuscript is the description of a set of closed-loop verification scenarios.

III. Model
Considering the intruder and ownship as Dubins aircraft models, a nonlinear relationship is obtained between the

aircraft states and the NN inputs. The index of the output with the minimum value is computed and the corresponding

advisory command is sent to the ownship aircraft plant. These relationships are not trivial to encode in most reachability

analysis tools, so transformations were necessary.

This paper introduces and uses a closed-loop ACAS Xu benchmark, where state variables 1 to 3 correspond to the

ownship states, variables 4 to 6 correspond to the intruder state. Two approaches are analyzed, one using the NNV tool

and a second using the nnenum tool.

For NNV, additional variables 7 to 9 are introduced represent the nonlinear relationship between aircraft states that

correspond to inputs 1 to 3 of the NNs. The original functions for these 3 inputs are described in Eq. 1. Defining these

as differentiable functions, their time derivatives are computed and added as state variables in the system resulting in a

9-dimensional ODE plant model in Eq. 2, where 2 is a user-defined constant.
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d =

√
(G8 − G>)2 + (H8 − H>)2

\ = 2C0=−1 ( H8 − H>
G8 − G> + d

) − k>

k = k8 − k>

(1)

In the second nnenum approach, only the first six variables and ODEs are used from Eq. 2, with an external

observation function that computes the nonlinear variables needed for the neural network inputs as described in Eq. 1.

¤G1 = ¤G> = E2>B(k>),

¤G2 = ¤H> = EB8=(k>),

¤G3 = ¤k> = D,

¤G4 = ¤G8 = E2>B(k8),

¤G5 = ¤H8 = EB8=(k8),

¤G6 = ¤k8 = 2,

¤G7 = ¤d =
(H8 − H>) ( ¤H8 − ¤H>) + (G8 − G>) ( ¤G8 − ¤G>)√

(G8 − G>)2 + (H8 − H>)2
,

¤G8 = ¤\ =
2( ¤H8 − ¤H>) (G8 − G> + d) − 2(H8 − H>) ( ¤G8 − ¤G> + ¤d)

(H8 − H>)2 (G> − G8 + d)2
− ¤k>,

¤G9 = ¤k = ¤k8 − ¤k>

(2)

For input into the NN, it is required that that \ and k must be in the [−c, c] range. Thus, these dynamics can be

defined as hybrid automata with one mode of operation, where preset self-transitions to keep these states within range,

or can be transformed into their correct range after computing the plant outputs, separate from the plant dynamics

computation.

IV. Closed Loop Verification Test Case Generation
The objective of the closed loop verification tests is to demonstrate that the ownship and intruder aircraft remain

safely separated at all times. The unsafe set is defined by the NMAC cylinder when there is a separation of less than 100

ft vertically or 500 ft horizontally. To scope the testing, the following ranges of variables are used: distances from 0 to

the maximum turn diameter (d ∈ [0, 87472] ft), the full range of angles to the intruder and heading of the intruder

with respect to the ownship (\ ∈ [−?8, ?8],k ∈ [−?8, ?8]), and full range of reasonable velocities from a slow takeoff

velocity to over Mach 1 (E8=C ∈ [60, 1145] ft/s, E>F= ∈ [100, 1145] ft/s). By law of sines, the variables used to describe
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the relative aircraft geometry are related with the time to collision ) as described in Eq. 3, and depicted in Fig. 4.

Any collision test case can be generated by fixing the time to collision ) , \, E8=C , and d, and computing the remaining

variables as described in Table 3.

d

sink
=

E>F=)

sin(\ − c − k) =
E8=C)

B8=(2c − \) (3)

(a) Closing Left (b) Closing Right (c) Head On (d) Tail Chase

Fig. 4 Closed Loop Test Case Geometry Examples

Table 3 Computing Ownship Velocity and relative heading from randomly selected angle to intruder, intruder
velocity, and distance to the intruder

Closing Left Closing Right Head On Tail Chase
\ 0 < \ < c −c < \ < 0 \ = ±c \ = 0
k − sin−1

(
d

) E8=C
B8=( |\ |)

)
sin−1

(
d

) E8=C
B8=( |\ |)

)
0 0 or c

i (from sum of angles) c − |\ | − |k | c − |\ | − |k | - -
E>F=

E8=C sin(i)
B8=( |\ |)

E8=C sin(i)
B8=( |\ |)

) E8=C−d
)

) E8=C+d
)

To generate a standard set of closed loop test cases, \, E8=C , and d were selected from the following discretized sets of

values and used to calculate appropriate values of E>F= and k: \ ∈ {−3c/4,−?8/2,−3c/8?8/4, 0, c/4, c/3, 3c/4, c}

rad, E8=C ∈ {60, 150, 300, 450, 600, 750, 900, 1050, 1145} ft/s, and d ∈ {10000, 43736, 87472, 120000} ft. Using a Latin

hypercube sampling of E8=C and \ for baseline coverage, the test cases in Table 4 may be used to evaluate a range of

properties across the state space. To compute the Cartesian coordinates of the intruder, Eqs. 4-5. With the exception

of the head on test case 10, each of the test cases are selected so that both aircraft are traveling in roughly the same

direction. This is because aircraft are generally separated by at least 1000 feet in altitude Air Traffic Control or federal

regulations. For example, the Code of Federal Regulations, Title 14, Section 91.159 instructs pilots to fly at an odd
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altitude plus 500 feet when traveling East on a heading between 0-179 degrees, or an even altitude plus 500 feet when

traveling West on a heading between 180-359 degrees [34].

G8=C = −d sin(\) (4)

H8=C = d sin(c/2 − \) (5)

Table 4 ACAS Xu Benchmark Closed Loop Test Cases

Test Name E8=C \ d E>F= k G8=C H8=C

Point (ft/s) (rad) (ft) (ft/s) (rad) (ft) (ft)
i1�! Left Abeam 1050 c/2 43,736 954.6 -0.4296 -43,736 0
i2�! Intruder Tail Chase 900 c 43,736 462.6 0 0 -43,736
i3�! Right Gaining 200 −3c/4 43,736 100 0.3617 30,926 -30,926
i4�! Left Gaining 600 3c/4 43,736 204.9 -0.5415 -30,926 -30,926
i5�! Left Closing 300 c/4 43,736 362.3 -0.2379 -30933 30933
i6�! Right Abeam 750 −c/2 43,736 609.3 0.6226 43,736 0
i7�! Right Isosceles 1145 −3c/8 87,472 1145.9 0.7835 80,814 33,474
i8�! Right Closing 450 −c/4 43,736 636.2 0.7577 30,926 30,926
i9�! Ownship Tail Chase 60 0 43,736 497.4 0 0 43,736
i10�! Head On Collision 600 0 120,000 600 c 0 120,000

V. Analysis Approaches
This section describes the fundamental theory behind star sets used to approximate reachable sets, as well as the

closed loop neural network verification approaches.

A. Star Set Theory

A star set [23, 35] (or simply star) Θ is a tuple 〈2,+, %〉 where 2 ∈ R= is the center vector, + = {E1, E2, · · · , E<} is a

set of m basis vectors in R=, and % : R< → {>,⊥} is a predicate. The set of states represented by the star is given as:

ÈΘÉ = {G | G = 2 + Σ<8=1 (U8E8) such that %(U1, · · · , U<) = >}. (6)

Sometimes we will refer to both the tuple Θ and the set of states ÈΘÉ as Θ. In this work, we restrict the predicates to

be a conjunction of linear constraints, %(U) , �U ≤ 3 where, for ? linear constraints, � ∈ R?×<, U is the vector of

<-variables, i.e., U = [U1, · · · , U<]) , and 3 ∈ R?×1. A star is an empty set if and only if %(U) is empty.

Any convex polyhedra can be represented as star sets. An affine mapping of a star set Θ = 〈2,+, %〉 defined by

9



(a) Property i1�! , Left Abeam (b) Property i2�! , Intruder
Tail Chase

(c) Property i3�! ,Right Gaining

(d) Property i4�! , Left Gaining (e) Property i5�! , Left Closing (f) Property i6�! , Right Abeam

(g) Property i7�! , Right Isosceles (h) Property i8�! , Right Closing (i) Property i9�! , Ownship Tail Chase

Fig. 5 Depiction of the aircraft encounter geometry for the closed loop ACAS Xu verification properties
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a mapping matrix , and an offset vector 1 is another star set Θ′ = 〈,2 + 1,,+, %〉. The intersection of a star set

Θ = 〈2,+, %〉 with a polyhedron � , �U ≤ ; is another star set Θ′ = 〈2,+, % ∧ %�〉, where %� , � ×+U ≤ ; −� × 2.

B. Neural Network Verification (NNV) Tool

The NNV tool is one of the two verification tools used to analyze the safety and functionality of the ACAS Xu

NN system. This tool is evaluated on 10 closed-loop benchmarks where the safety of the ownship is analyzed with

respect to one intruder aircraft. The initial analysis consists of evaluating the safety of the ownship aircraft using

algorithm 1 under multiple scenarios, where the plant is described as the set of non-linear ODEs in Eq. 2. All the sets

are represented using star-sets, and all the reachability functions return over-approximations of the reachable sets. As

part of the functions used in the reachability algorithm, multiple trajectories are allowed to be computed at each time

step. In the case that multiple indexes are returned, the reach sets are split and paired with the corresponding advisory,

keeping a record of the parents of each set to avoid an explosion of computed sets and reduce the conservativeness and

memory consumption in NNV methods. This is a new feature added to the existing NNV star-set methods.

Algorithm 1: General ACAS Xu NNCS reachability algorithm in NNV
Result:
'B: Plant reachable states
Initialize
8=8C_B4C: Initial state set;
0 ?A4E : Previous advisory;
C�: Number of control steps;
B0 5 4: True;
>DC_<0C: Plant output matrix;
while safe do

for (8 = 0; 8 < C�; 8 = 8 + 1) do
state_set = plantReach(init_set , a?A4E );
if d < 500 then

safe = False
end
output_set = affineMap(state_set, out_mat);
input## = normalizeNNinputs(output_set);
output## = NNreach(a?A4E , input## );
advisory## = argminNN(output## );
init_set = state_set;
a?A4E = advisory## ;
Rs[i] = state_set;

end
end

C. Neural Network Enumeration (nnenum) Tool

The nnenum [24] tool is also used for analysis, which uses star sets to reason over possible neural network outputs

given sets of input states. For nnenum’s analysis, sets are split whenever multiple advisories are possible, as well as
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when needed to maintain the input ranges for the neural networks (for example, if an angle can be less than or greater

than c). The plant reachability is done using a local numerical linearization of the observed state variables.

VI. Results
The correct and safe behavior of the ACAS Xu NN approximation is evaluated with two different tools NNV and

nnenum on the 10 closed loop test cases depicted on Fig. 5. For all the following scenarios, a control period of 2

seconds is used.

A. Results with the NNV Tool

Results for all 10 benchmarks are introduced in the order presented in Table 4, with a reach step size of 0.05 seconds.

For each case, it is verified that the ownship’s advisory system guides the aircraft to safety in the presence of the intruder.

Based on the simulations of each experiment, the computation process is lightened by fast-forwarding the initial state to

a future point in the trajectory while still maintaining the COC advisory for at least the following 2 control steps. At this

point, the uncertainty to the x-y position of the ownship is included.

All these results can be found in Figs. 6 to 15. For each scenario, three different plots are presented to illustrate

our results. Plot 0 corresponds to the control step reach sets of ownship and intruder trajectory, while subfigure 1

corresponds to the ownship reachable sets: the control step reach sets in red and all the interval reach sets along the

ownship’s trajectory in green. Subfigure 2 corresponds to a rotation to the original test case, to demonstrate that initial

orientation of aircraft is not relevant to the ACAS Xu NN advisory system. However, NNV methods may be affected by

them under certain specific conditions, such as the intruder tail chase i2�! . Due to the nature of the ODE model and the

over-approximation methods, when uncertainty is added both to the G and H positions, the plant reach sets split infinitely

many times and thus causing out of memory errors. Therefore, uncertainty is added to only the x position as it provides

a set of more relevant and meaningful results.

Depicted in the ten experiments, when the ownship is approached by the intruder from one side, the ownship deviates

its trajectory towards the opposite side. This can be observed in Figs. 6, 8-13. In the remaining cases, the ownship

navigates away to its right in order to avoid a head-on collision in Fig. 15 and to avoid crashing into the intruder’s tail,

as depicted in Fig. 14. Lastly, when the ownship is the one being tail chased by the intruder, depending on the exact

location of the aircraft along the x-axis, the advisory system may send strong left or weak right turn commands, as

observed in Fig. 7.
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(a) Ownship (red) vs. intruder (blue) (b) Ownship step sets (red) and all sets (green).
(Zoomed in)

(c) Ownship (red) vs. intruder (blue).
(Rotation 90°)

Fig. 6 Reachable Sets: Left Abeam i1�! with initial ownship uncertainty G> ± 100 and H> ± 100.

(a) Ownship (red) vs. intruder (blue) (b) Ownship step sets (red) and all sets (green).
(Zoomed in)

(c) Ownship (red) vs. intruder (blue).
(Rotation 180°)

Fig. 7 Reachable Sets: Intruder Tail Chase i2�! with initial ownship uncertainty G> ± 100.

(a) Ownship (red) vs. intruder (blue) (b) Ownship step sets (red) and all sets (green).
(Zoomed in)

(c) Ownship (red) vs. intruder (blue).
(Rotation 90°)

Fig. 8 Reachable Sets: Right Gaining i3�! with initial ownship uncertainty G> ± 100 and H> ± 100.
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(a) Ownship (red) vs. intruder (blue) (b) Ownship step sets (red) and all sets (green).
(Zoomed in)

(c) Ownship (red) vs. intruder (blue).
(Rotation 90°)

Fig. 9 Reachable Sets: Left Gaining i4�! with initial ownship uncertainty G> ± 100 and H> ± 100.

(a) Ownship (red) vs. intruder (blue) (b) Ownship step sets (red) and all sets (green).
(Zoomed in)

(c) Ownship (red) vs. intruder (blue).
(Rotation 90°)

Fig. 10 Reachable Sets: Left Closing i5�! with initial ownship uncertainty G> ± 100 and H> ± 100.

(a) Ownship (red) vs. intruder (blue) (b) Ownship step sets (red) and all sets (green).
(Zoomed in)

(c) Ownship (red) vs. intruder (blue).
(Rotation 90°)

Fig. 11 Reachable Sets: Right Abeam i6�! with initial ownship uncertainty G> ± 100 and H> ± 100.
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(a) Ownship (red) vs. intruder (blue) (b) Ownship step sets (red) and all sets (green).
(Zoomed in)

(c) Ownship (red) vs. intruder (blue).
(Rotation 90°)

Fig. 12 Reachable Sets: Right Isosceles i7�! with initial ownship uncertainty G> ± 100 and H> ± 100.

(a) Ownship (red) vs. intruder (blue) (b) Ownship step sets (red) and all sets (green).
(Zoomed in)

(c) Ownship (red) vs. intruder (blue).
(Rotation 90°)

Fig. 13 Reachable Sets: Right Closing i8�! with initial ownship uncertainty G> ± 100 and H> ± 100.

(a) Ownship (red) vs. intruder (blue) (b) Ownship step sets (red) and all sets (green).
(Zoomed in)

(c) Ownship (red) vs. intruder (blue).
(Rotation 90°)

Fig. 14 Reachable Sets: Ownship Tail Chase i9�! with initial ownship uncertainty G> ± 100 and H> ± 100.
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(a) Ownship (red) vs. intruder (blue) (b) Ownship step sets (red) and all sets (green).
(Zoomed in)

(c) Ownship (red) vs. intruder (blue).
(Rotation 90°)

Fig. 15 Reachable Sets: Head On Collision i10�! with initial ownship uncertainty G> ± 100 and H> ± 100.
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B. Results with the nnenum Tool

Simulations of the ten closed-loop scenarios and reach sets computed with nnenum are shown in Figs. 16-25. The

plotted points are the locations where a decision was made by the ACAS Xu system, with the colors indicating the

advisory issued at that location. For each scenario, an initial ownship uncertainty of ±5000 in the G direction and ±200

in the H direction is used. Although this meant splitting of star sets was needed due to multiple possible commands in a

large set, it was still feasible to enumerate all possibilities in reasonable analysis time. This is because splitting causes

the sets to become smaller, so that further splitting is less likely at future states. Further, since the regions are split

during neural network analysis, the individual star sets become small, so that local linearization of the plant dynamics is

accurate. This can be observed by the similarity of the simulations and computed reachable sets in the figures.

(a) Simulations (b) Simulations (Zoomed In) (c) Reachable Set

Fig. 16 Left Abeam Scenario i1�! with initial ownship uncertainty G0 ± 5000 and H0 ± 200.

(a) Simulations (b) Simulations (Zoomed In) (c) Reachable Set

Fig. 17 Intruder Tail Chase Scenario i2�! with initial ownship uncertainty G0 ± 5000 and H0 ± 200.
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(a) Simulations (b) Simulations (Zoomed In) (c) Reachable Set

Fig. 18 Right Gaining Scenario i3�! with initial ownship uncertainty G0 ± 5000 and H0 ± 200.

(a) Simulations (b) Simulations (Zoomed In) (c) Reachable Set

Fig. 19 Left Gaining Scenario i4�! with initial ownship uncertainty G0 ± 5000 and H0 ± 200.

(a) Simulations (b) Simulations (Zoomed In) (c) Reachable Set

Fig. 20 Left Closing Scenario i5�! with initial ownship uncertainty G0 ± 5000 and H0 ± 200.
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(a) Simulations (b) Simulations (Zoomed In) (c) Reachable Set

Fig. 21 Right Abeam Scenario i6�! with initial ownship uncertainty G0 ± 5000 and H0 ± 200.

(a) Simulations (b) Simulations (Zoomed In) (c) Reachable Set

Fig. 22 Right Isosceles Scenario i7�! with initial ownship uncertainty G0 ± 5000 and H0 ± 200.

(a) Simulations (b) Simulations (Zoomed In) (c) Reachable Set

Fig. 23 Right Closing Scenario i8�! with initial ownship uncertainty G0 ± 5000 and H0 ± 200.
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(a) Simulations (b) Simulations (Zoomed In) (c) Reachable Set

Fig. 24 Ownship Tail Chase Scenario i9�! with initial ownship uncertainty G0 ± 5000 and H0 ± 200.

(a) Simulations (b) Simulations (Zoomed In) (c) Reachable Set

Fig. 25 Head On Collision Scenario i10�! with initial ownship uncertainty G0 ± 5000 and H0 ± 200.
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VII. Conclusion
This paper proposes ten closed-loop test scenarios for the ACAS Xu Neural Network Control System, which

are analyzed using two reachability analysis tools. The reachability tools are used to show that the neural network

approximation of ACAS Xu maintains safety by avoiding intersection with the NMAC of an intruder aircraft, defined as

maintaining a distance of 500 ft laterally and 100 feet vertically. Both NNV and nnenum reachability tools show the

safety of the aircraft for all ten ACAS Xu benchmark closed loop test cases when uncertainty is added to the initial

aircraft position.

This research was limited to 5 of the 45 ACAS XU neural networks that corresponded to co-altitude flight. Further

research is needed to determine if climbing or descending flights can also be proven safe using these tools. For next

steps, the team plans to add closed-loop benchmarks and to add uncertainty to other state variables and to analyze a

more complex aircraft model based on the F-16 Fighting Falcon [36].

Appendix: Open Loop Verification Properties
An ACAS Xu verification benchmark proposed 10 open loop properties of the neural network approximation. These

properties are summarized in this appendix with visual depictions of the geometry to give provide the reader with more

intuition into how these neural networks have been verified in the past and how this compares to the closed loop test

cases. It is worth noting that these neural networks assign a value to each of the five possible outputs with the convention

that the lowest output is the best choice (in other neural network designs, the highest input may be the best choice).

Table 5 ACAS Xu Benchmark Open Loop Properties.

d \ k E>F= E8=C Networks Output
(ft) (rad) (rad) (ft/s) (ft/s)

i1 ≥ 55,948 × × ≥1145 ≤ 60 All COC ≤ 1500
i2 ≥ 55,948 × × ≥1145 ≤ 60 #G≥2,H COC not max
i3 ∈ [1500,1800] ∈ [−0.06,0.06] ≥3.10 ≥980 ≥960 ≠ #1,H≥7 COC not min
i4 ∈ [1500,1800] ∈ [−0.06,0.06] 0 ≥1000 ∈ [700, 800] ≠ #1,H≥7 COC not min
i5 ∈ [250,500] ∈ [0.2, 0.4] ≈ −c ∈ [100, 400] ∈ [0, 400] #1,1 SR min
i6 ∈ [12000, ∈ [0.7, c]∨ ≈ c ∈ [100, 1200] ∈ [0, 1200] #1,1 COC min

62000] ∈ [−?8,−0.7]
i7 ∈ [0, 60760] ∈ [−c, c] ∈ [−c, c] ∈ [100, 1200] ∈ [0, 1200] #1,9 SL,SR min
i8 ∈ [0, 60760] ∈ [−c,−0.75c] ∈ [−0.1, 0.1] ∈ [600, 1200] ∈ [600, 1200] #2,9 WL ∨ COC
i9 ∈ [2000, 7000] ∈ [−0.4,−0.14] ≈ −c ∈ [100, 150] ∈ [0, 140] #3,3 SR min
i10 ∈ [36000, 60760] ∈ [0.7, c] ≈ −c ∈ [900, 1200] ∈ [600, 1200] #4,5 COC min

Property i1 may select a value of d (approximately 10.5 miles away) that is larger than the maximum turning radius

of an aircraft going at 1145 ft/s (43,736). This maximum velocity of 1145 ft/s is approximately 780 miles per hour

(mph), which as a conservative upper bound is much larger than what a commercial aircraft would typically fly (Mach

21



(a) Properties i1 and i2 (b) Property i3 (head on collision) (c) Property i4 (closing collision)

(d) Property i5 (advise strong right) (e) Property i6 (moving away) (f) Property i7 (vertically separated)

(g) Property i8 (h) Property i9 (i) Property i10

Fig. 26 Depiction of the aircraft encounter geometry for the open loop ACAS Xu verification properties
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1 is 761 mph at sea level, decreasing to 678 mph at a 30,000 ft typical commercial aircraft cruise altitude). The 60

ft/s (40 mph) velocity of the intruder in this property is a conservative lowest velocity for a fixed wing aircraft. While

the selection of variables seems reasonable, this first property isn’t necessarily a good property because it specifies a

value of the output which is an artefact of the design choices for the neural network rather than an ordinal ranking of

the desired outcome for the aircraft encounter. In other words, a better property might specify that the selected action

produced by the neural network should be clear of conflict. Property i2 is a slightly better variation of i1 because it test

that clear of conflict is not the last choice of the neural network for a subset of the conditions of i1.

Properties i3 and i4 checks that the neural network does not output clear of conflict in cases where the intruder

is ahead of the ownship and a collision is imminent. Property i3 checks when the two aircraft are approaching for a

head on collision within less than a second (unless there is sufficient vertical separation). Property i4 checks when the

ownship is directly behind and closing on the intruder at a rate of 200-300 ft/s, which will result in a collision in less

than 9 seconds.

The remaining 6 properties check a wide range of conditions. Property i5 checks that the neural network favors

the strong right advisory if the intruder is passing very close to the ownship’s left. Property i6 checks that the neural

network outputs clear of conflict if the intruder is sufficiently far away behind and moving away from the ownship.

Property i7 check that the neural network does not output a strong left or right advisory when vertical separation is

large (g = 100s) and the previous advisory was clear of conflict. Property i8 checks that the neural network outputs

weak left or clear of conflict as the minimal score when the previous advisory was weak left, there is 100 seconds until a

loss of vertical separation, and the intruder is behind and to the right of the ownship. Property i9 checks that the neural

network outputs a strong left signal in a potential head on collision where the intruder is passing to the right. Property

i10 checks that the neural network outputs clear of conflict if the intruder aircraft is far away and moving away.
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