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Aviation has a remarkable safety record ensured by strict processes, rules, certifications,
and regulations, in which formal methods have played a role in large companies developing
commercial aerospace vehicles and related cyber-physical systems (CPS). This has not been the
case for small Unmanned Aircraft Systems (UAS) that are still largely unregulated, uncertified,
and not fully integrated into the national airspace. However, emerging UAS missions interact
closely with the environment and utilize learning-enabled components (LECs), such as neural
networks (NNs) for many tasks. Applying formal methods in this context will enable improved
safety and ease the immersion of UASs into the national airspace.

We develop UAS that interact closely with the environment, interact with human users,
and require precise plans, navigation, and controllers. They also generally leverage LECs for
perception and data collection. However, the impact of ML-based LECs on UAS performance
is still an area of research. We have developed an advanced simulator incorporatingML-based
perception in highly dynamic situations requiring advanced control strategies to study the
impacts of ML-based perception on holistic UAS performance.

In other work, we have developed a WebGME-based software framework called the
Assurance-based Learning-enabled CPS (ALC) toolchain for designing CPS that incorporate
LECs, including the Neural Network Verification (NNV) formal verification tool. In this paper,
we present two key developments: 1) a quantification of the impact of ML-based perception on
holistic (physical and cyber) UAS performance, and 2) a discussion of challenges in applying
these methods in this environment to guarantee UAS performance under various Neural Net
(NN) strategies, executed at various computational rates, and with vehicles moving at various
speeds. We demonstrate that vehicle dynamics, rate of perception execution, the design of the
controller, and the design of the NN all contributed to total vehicle performance.

I. Introduction
Aviation has a remarkable safety record ensured by strict processes, rules, certifications, and regulations. In

the development of large, commercial aircraft/spacecraft, formal methods have rightly been added to development,
testing, and certification processes [1–3]. However, small Unmanned Aircraft Systems (UAS) or “drones” have largely
evolved out of the hobbyist community∗, and small UAS research labs at many universities. Each of these vehicles is a
safety-critical cyber-physical system (CPS) most likely operating an open-source, unverified, autopilot† not beholden to
Federal Aviation Administration (FAA) certification, verification, or much regulation.

Increasingly, however, small companies, researchers, and military projects are building drones capable of advanced
missions in which they interact closely with the environment under complex scenarios, possibly using machine learning
enabled components and complicated controllers [4–6]. These learning enabled components (LEC) can be part of data
collection algorithms, perception, classifiers, navigation, or even in low-level control strategies. This puts LECs directly
in safety-critical systems where errors can result in catastrophes. Understanding how LECs in safety-critical systems
impact system performance, safety, and assurances is still ongoing research.
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†For example, ArduPilot https://ardupilot.org/

1

https://www.modelaircraft.org/
https://ardupilot.org/


In the first of potentially many more rules, the FAA recently proposed the “Remote Identification of Unmanned
Aircraft Systems” rule‡ to more tightly, and safely integrate UAS into the national airspace. A consequence of
the rule is to force drone manufacturers to include remote ID equipment and algorithms into their products. As
machine learning components spread to UAS, more certification and verification required of manufacturers, and
more advanced, dangerous missions for UAS are proposed, the need for rigorous formal methods in this space will
increase dramatically. To-date, however, very few UAS companies or researchers utilize formal methods in any
way in their development. A common reason given is the cost of building such processes into the development
cycle especially without federal regulations requiring it. This, unfortunately, misses an opportunity to allow formal
methods to help provide a safer product or system as well as save money by lowering overall costs of development [7].

Fig. 1 Prescribed burn ignited by Ignis from Drone
Amplified (image courtesy of Drone Amplified).

Through the DARPAAssured Autonomy program, we
have developed a WebGME-based§ software framework
called the Assurance-based Learning-enabled CPS (ALC)
toolchain for designing CPS that incorporate learning-
enabled components (LECs) [8, 9]. The Neural Network
Verification (NNV) software tool¶ is incorporated within
ALC, which has been applied to verify safety properties
for several CPS that incorporate LECs such as neural
networks [10–17]. Figure 2 shows an overview of the
ALC toolchain, where activities encompass traditional
model-based design (MBD) of CPS, but with a focus
toward LECs and providing guarantees of their behavior
at design-time and during system execution (runtime).

The ALC toolchain incorporates methods for training,
testing, validation, verification, and related activities for
LECs and their closed-loop interaction with CPS. Exist-
ing representative case studies and applications include
verifying collision avoidance of an unmanned underwater
vehicle (UUV), where a SegNet-based encoder-decoder
performs semantic segmentation, and verifying collision avoidance in autonomous emergency braking systems (AEBS)
between motor vehicles, where a feedforward neural network trained using reinforcement learning acts as a feedback
controller [13].

‡https://www.federalregister.gov/documents/2019/12/31/2019-28100/remote-identification-of-unmanned-aircraft-
systems

§https://webgme.org/
¶https://github.com/verivital/nnv
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Fig. 2 ALC toolchain architecture [9].

In this paper we make two primary contributions. First, using a novel simulator we precisely quantify the impact
of NN design, execution rate, vehicle dynamics, and controller design on UAS performance in UAS-to-UAS tracking
scenarios – a dynamically complex scenario requiring advanced perception and control. Although work in advancing
NNs is important, we demonstrate that to achieve reasonably good performance, the NN only need be designed to
be “good enough” for the target application/scenario and controller. More advanced designs potentially waste critical
resources at best, and at worst may require too many resources to be effective resulting in premature failure under taxing
conditions. Second, we discuss the application of the ALC and NNV toolchain to a ML-based perception/control
strategy, and show how this can improve and guide design while also providing assurances about performance.

II. ML-based Perception/Control UAS Simulator
We seek to directly control and measure the impact of NN design and execution, and controller design on holistic

UAS performance. As a result, we seek to carefully control computation, dynamics, control, and time passage in an
advanced simulator. Here we describe the simulator, experimental setup, and approach we use to quantify holistic
perception/control performance.

A. Experimental Setup
The experimental setup is created by integrating ROS‖ and AirSim [18]. The detailed information about these two

is described here.

1. ROS
The Robot Operating System aka ROS is a collection of various software packages, which are intended for the

software development of robots. For this experiment, we utilize ROS Melodic.

2. AirSim
AirSim is an open-source simulator for drones and cars∗∗. It was designed and developed by Microsoft, built on the

Unreal Engine, with the goal of assisting the community in researching deep learning, especially for computer vision
and reinforcement learning domains. AirSim is capable of integrating into ROS through the AirSim ROS Wrapper. As a
result, we use ROS to control the drones within AirSim for these experiments.

‖http://wiki.ros.org/
∗∗https://github.com/Microsoft/AirSim

3

http://wiki.ros.org/
https://github.com/Microsoft/AirSim


B. Approach

1. Experiment Scenario
The experiment scenario contains two drones, a target drone that can follow an arbitrary trajectory, and a chaser

drone trying to follow its path. The chaser drone leverages an onboard camera to sense, detect, and ultimately control
the chaser drone.

Target Drone – The target drone is the “target” or point of interest and in this experiment moves in an S-shaped
trajectory; the significance of the S shape trajectory is that it has varying velocity and acceleration directions.

Chasing Drone – The chasing drone aims to sense, detect, and track the target drone, maintaining the same distance
from it throughout. The target drone’s commanded S-shape trajectory is unknown to the chaser drone. To accomplish
this task, convolutional neural networks are used to detect the target drone, and PID (Proportional, Integral, Derivative)
controllers are used to control the chasing drone based on the detected location of the target drone.

Fig. 3 Sample scene from simulation experiment.

A sample picture of the environment can be seen in Figure 3. The aim of the experiment is that the chasing drone
should track and follow the target drone. This scenario represents taxing conditions where velocity and the environment
can change rapidly, requiring a tight feedback loop between NN-based detection and PID-based controllers. The overall
architecture of the system is shown in Figure 4.

Fig. 4 Block diagram for chasing drone in UAS-UAS tracking scenario.

2. Drone Detection
Computational complexity vs. accuracy is a common trade-off in convolutional neural networks (CNNs). Some

networks are very accurate but are computationally complex and hence may take longer to execute, while others execute
faster but accuracy is sacrificed. To design our drone detection network we choose two different networks exemplifying
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this tradeoff: Faster RCNN (Regions-based Convolutional Neural Networks) [19], and SSD (Single Shot multi-box
Detector). Faster RCNN is highly accurate but is more computationally complex, and hence executes slower on our
hardware resulting in a lower rate of target detection, thereby impacting the controller. In contrast, the SSD has lower
detection accuracy, but execute much more quickly, matching the sampling rate of the controller.

Using the AirSim environment, an artificial dataset containing three hundred images is created. A drone is placed in
various environments within the simulator; several images of it are collected during its flight. The dataset contains
several variations of images such as various poses of drone, scenarios with occlusion, among others. All of these images
are labeled manually by using a tool called LabelImg. These three hundred images are then used to train the neural
networks.

The two networks Faster RCNN, and SSD are trained with the dataset mentioned above. These networks are trained
on a machine that has 32 GB RAM, and 2 Nvidia RTX Graphics cards. It took thirty-two thousand epochs for Faster
RCNN to converge and Sixty-three thousand epochs for SSD to converge. Faster RCNN is designed to execute at a rate
of 3 Hz – providing 3 detections of the target drone every second. In contrast, SSD can execute at 30 Hz. Sample results
of detection can be seen in Figure 5.

Fig. 5 Sample drone detections

3. Control
The NNs detect the target drone in the images which are taken from the chasing drone’s camera producing image

coordinates. The image coordinates are then converted to world coordinates, and the world coordinates are handed off to
the PID controller of the chasing drone. First, the detection algorithm writes the area of the bounding box and image
coordinates as (0, F, ℎ), where

• 0 – Area of the detected bounding box
• F – Detected drone center along the width of the image
• ℎ – Detected drone center along with the height of the image

In the AirSim world coordinate system, the coordinates are - (Front – Back axis), . (Left-Right axis), and / (Up –
Down axis). The image coordinates (F, ℎ) will be used to get the position of the target drone using
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The center of the image frame is F2 along the width and ℎ2 along with the height. The center of the detection bounding
box along the width is F, and along the height is ℎ. When the target drone stays in front of the chasing drone without
any left-right or top-down offsets, then F values tend towards F2 and ℎ value tends towards ℎ2 . The difference between
F and F2 is proportional to the target drone’s displacement changes along the . -axis. Likewise, the difference of ℎ
and ℎ2 is proportional to the displacement changes of the target drone along the /-axis. Multiplying these by constant
values leads to the actual displacement along the . and / axes.

Unlike the . , / axes, the - (Front-Back) axis is the lost dimension (i.e., depth) in the image. To address this an
we leverage the known area of the bounding box of the drone in an image a known distance away. By observing the
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area variation of the detected box, the algorithm estimates the distance (-) away of the target drone. For this approach,
the initial area of the bounding box was detected and saved as 02 . Every time the detection happens, the area of the
bounding will be compared to obtain the --axis values of the drone. The difference between 02 and 0 is proportional to
--axis displacement.

The coordinate conversion is shown in the Equation 2. UG , UH , UI are the camera constants along the - , . , and /
axes. These values are calculated by running several experiments with the target and chasing drones with different
trajectories and velocities and are 0.05, -6, -3.5, respectively. The coordinate conversion is done relative to the chasing
drone. Hence adding the chasing drone’s coordinates gives the absolute coordinates of the target drone.

A PID controller is designed for the chasing drone with the objective of following the target drone. Let
[-�� , .�� , /��]) be the pose of the chasing drone, and [-) � , .) � , /) �]) be the pose of the target drone. The
target drone’s pose is used as a reference point to calculate the errors and generate the required velocities using PID
controllers. These error calculations and generating the velocities are
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The generated velocities are used to give the control input to the chasing drone. The controller operates at a rate of 30
Hz. The performance of the chasing drone following the target drone can be seen in Figure 3.

C. Preliminary Results
We study the impacts of 3 key parameters: 1) NN design, where RCNN and SSD are placeholders for highly

accurate, but complex NNs, and less accurate, but simple NNs respectively; 2) execution rate of the NNs; and 3) velocity
of the UASs. We vary each of these parameters to examine the impact of each and report results.

Fig. 6 RCNN Performance
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Avg. Velocity Frequency Avg. Error Basic Tracking

1m/s
1Hz 0.74m Yes
2Hz 0.37m Yes
3Hz 0.37m Yes

2m/s
1Hz 1.17m Yes
2Hz 0.71m Yes
3Hz 0.66m Yes

5m/s
1Hz NA No
2Hz NA No
3Hz NA No

10m/s
1Hz NA No
2Hz NA No
3Hz NA No

Table 1 RCNN Neural Net Performance

Figure 6 and Table 1 show results for the RCNN, and Figure 7 and Table 2 show results for the SSD NN. Figures 6
and 7 illustrate the control performance (based on tracking error) of the chasing UAS as the target UAS moves at an
average of 5 m/s. Each line in the plots represents a different execution rate of the perception algorithm (NN). Although
we ran this simulation at numerous velocities for the target UAS, this particular one (5 m/s) illustrates the limitations of
the controller if the NN is not executed sufficiently quickly. In Figure 6 we see that when executing the NN at 1 Hz,
there is no tracking, that is, the perception cannot provide information quickly enough for any tracking. Similarly, at 2
Hz, the chasing UAS loses track completely of the target at time 26 s. In contrast, when executed at 3 Hz, the NN is
capable of providing sufficient detection of the target drone to allow the controller to track it. The black up and down
arrows show when the NN loses track (down arrow) and then regains tracking (up arrow). This raises a significant point
that an NN does not need to have perfect detection for a controller to track a target.

A slightly different story unfolds in Figure 7 which uses the SSD NN. The NN executed at 5 Hz does detect the
target drone sufficiently often (despite losing and regaining tracking regularly) to allow the controller to track. However,
performance is not great. In contrast, when executed at 10 Hz or above, performance is approximately the same
(illustrating the limits of the controller). This illustrates a tradeoff between controller design, NN design, and execution
rates and suggests a more optimal co-design of NN and controller would improve holistic performance.

Table 1 and 2 quantify the performance of each NN under the varying parameters. Of note, in Table 2 does not
significantly improve its performance with more frequent execution beyond 5 Hz.
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Fig. 7 SSD Performance

Ave. Velocity Frequency Avg. Error Basic Tracking

1m/s

5Hz 0.269m Yes
10Hz 0.168m Yes
20Hz 0.155m Yes
30Hz 0.143m Yes

2m/s

5Hz 0.295m Yes
10Hz 0.227m Yes
20Hz 0.207m Yes
30Hz 0.202m Yes

5m/s

5Hz 0.978m Yes
10Hz 0.909m Yes
20Hz 0.897m Yes
30Hz 0.886m Yes

8m/s

5Hz NA No
10Hz NA No
20Hz 1.746m Yes
30Hz 1.674m Yes

10m/s

5Hz NA No
10Hz NA No
20Hz NA No
30Hz 1.803m Yes

Table 2 SSD Neural Net Performance

III. Challenges in Applying NNV and the ALC Toolchain
The overall ALC toolchain is illustrated in Figure 2. The toolchain incorporates methods for modeling closed-loop

systems, performing data-driven training and learning for LEC construction and evaluation (e.g., testing and validation),
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as well as verification with NNV [16]. In this work, we attempted to verify aspects of the UAS LECs, but experienced
several major challenges, that we discuss next and are representative of the issues arising in the application particularly
of formal verification for LECs.

First, most existing work in neural network verification has focused on image classification and related classification
problems (such as determining the control advisory in ACAS-Xu). In our UAS architecture, instead of classification,
object detection and localization are used, which produce bounding boxes in the output space. To the best of our
knowledge, no existing neural network verification methods have been applied to this problem, and defining robustness
specifications in these scenarios is an avenue for future work.

Second, specifically for the chosen neural network architectures (Faster RCNN and SSD), the networks as created
use pre-trained weights that make them quite large, larger likely than the VGG16/VGG19 ImageNet classifiers previously
analyzed with NNV [15]. This aspect motivates coordination in the creation of LECs between LEC designers and
verification engineers, such as that the LECs have been "designed for verification," as commonly arises in other domains
(digital logic, software, etc.). Primary design-for-verification concerns with LECs currently include (a) the input
dimensionality, (b) the specifications, (c) the types of layers used, and (d) the goal of the verification activities. The input
dimensionality is essential, because if a smaller input space may be used, such as lower resolution images, the overall
network architecture will be smaller, yielding fewer parameters, numbers of challenging activation functions and layer
types (e.g., ReLUs), and related complexities. In this instance, as object detection and localization have not significantly
been considered for robustness, defining the specifications would involve determining what is important for robustness in
this scenario. Several layer types, especially ReLUs and max-pooling layers, are computationally demanding to analyze
(NP-complete). For object detection and localization, support specifically for the layers that lift from the latent space to
the output space would also need to be supported for verification. Lastly, a critical design-for-verification concern is
what the goal of the verification activities would be: in this case, one could analyze robustness to perturbations, but
perhaps for this scenario, other closed-loop or system-level specifications are of greater practical benefit.

Third, considering the closed-loop coordination of perception LECs, like Faster RCNN and SSD, with controllers
and a physical plant, has also not been considered from a formal verification standpoint. Primary applications thus
far that consider LECs in closed-loop with plant models utilize LECs as controllers, such as the classes of systems
considered in the ARCH-COMP AINNCS category [10, 11, 20]. In these contexts, the LEC inputs are typically
low-dimensional, on the order of the size of the number of state variables in the plant model (or the observable states
of the plant). Considering perception LECs in closed-loop is significantly more challenging. For instance, when
considering low-dimensional LEC inputs that represent the plant state, one does not need to consider the impact of
environmental configurations that arise in perception, such as obstacles, as the low-dimensional inputs have typically
abstracted these. One avenue to address this is to consider an architecture where the LEC output is augmented so
that it is directly used within the control strategy, instead of having various post-processing steps, moving closer to
end-to-end style learning. Of course, this introduces a tradeoff, as this makes the LEC architecture more complex. Even
if addressed, another limitation for closed-loop verification is that is must be done for specific scenarios, encompassing
these environmental aspects.

We aim to address these issues in future work, by considering standard architectures used for object detection and
localization, such as Faster RCNN and SSD, as used in this work, and adding support for these architectures, necessary
layers, and formalization of robustness within NNV. Once these architectures are incorporated, another direction for
future work is to consider these object detection and localization components within closed-loop scenarios. A last
direction for future work is to utilize the full ALC toolchain to perform the training and validation, which currently
were done directly with TensorFlow and AirSim, which would make the application of assurance methods incorporated
within ALC easier. These methods go beyond the discussed verification methods like NNV, and would include runtime
assurance monitoring methods that can be generated by the ALC toolchain, as well as methods for out-of-distribution
detection, runtime verification [21, 22], and beyond.

IV. Conclusion
Machine Learning is being deployed in Learning-enabled components in a variety of safety-critical systems, but a

characterization of their impacts on UAS, and the application of formal methods for guaranteed assurance in UAS is
still lacking. In this paper, we report on a novel simulation that we use to characterize the impacts of LECs on UAS
performance in a UAS-to-UAS tracking scenario. We then discuss challenges in applying our ALC toolchain to the
ML-based perception/control system to provide formal guarantees of performance.

Much work is still needed to fully integrate formal method strategies into the small UAS community. Of primary
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interest is the need to make toolchains easy to use, accessible, and worthwhile for small business, researchers, and
startups to use. Emerging FAA rules and regulations may force this issue, and the research community can help aid the
transition to the emerging rules by providing available toolsets and methods to meet demands.
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